
2 CROSSTALK The Journal of Defense Software Engineering January 1998

A time bomb is ticking
inside billions of lines
of code: those two
missing digits from the
calendar year designa-
tion. Most computer
systems designed in the

past few decades refer to the year only by
its last two digits (95, 96, 97, etc.).
Originally a cost-cutting measure (be-
cause computer memory was expensive
and programmers looked for any way to
save space), this standard practice pre-
vents systems from distinguishing one
century from another. When the rest of
us make the transition from Dec. 31,
1999 to Jan. 1, 2000, many unmodified
systems will turn the clock back to Jan.
1, 1900.

We are now a scant two years away
from that apocalyptic date. Despite
warnings, technical descriptions of the
problem, solutions, and widespread
awareness, the question still remains: Are
we prepared for that first millisecond
after midnight on Dec. 31, 1999?

At a recent Air Force year 2000
(Y2K) conference, Lt. Gen. William J.
Donahue stated that he has spoken to
every Air Force four-star general and
every functional chief regarding the Y2K
problem and has concluded that

“Some Air Force activities are in
denial, others are on top of it. We
will not fix everything, but we
must maintain mission capability.
The Air Force has $350 million for
annual software sustainment. If
you do nothing but fix Y2K with
your funding, so be it.”

William Ulrich and Ian Hayes, Y2K
consultants, stated,

“Procrastination, whether inadvert-
ent or by design, is preventing
many organizations from launch-
ing more than one or two projects
at a time. By the time companies
reach full-scale deployment, it may
be too late to stabilize mission-
critical systems. The reasons be-
hind this delay include analysis
paralysis, politics, the fear of mis-
takes, confusion, lack of budget
appropriation, or just ignorance of
the effects of the problem. ... The
arrival of the year 2000 will be
death by a thousand small cuts. A
critical system failure may occur
from time to time, but the more
common situation will involve
hundreds of inconveniences that
pile up day after day.” (“The Year

2000 Crisis: State of the Industry,”
Software Magazine, October 1997).

Many factors may contribute to a
Y2K system failure, including denial,
procrastination, fear, confusion, and
budget constraints. It is interesting to
note that many of these factors are not
technical in nature, but instead are psy-
chological or programmatic.

As we prepared this issue of
CROSSTALK, it was enlightening to see that
some agencies are making real progress
in becoming Y2K compliant, such as the
Defense Logistics Agency (see p. 11).
On the other hand, it was disheartening
to hear from experts in the field that
there are real risks in delivering Y2K
projects on time (see “Throwing down
the Y2K Gauntlet” by Peter de Jager, p.
5). The loss of a magazine’s cover art is
insignificant compared to the loss of
accurate missile guidance systems.

The Department of Defense is using
a five-phase approach to become Y2K
compliant: Awareness, Assessment,
Renovation, Validation, and Implemen-
tation. If you find yourself involved in
one of these phases, perhaps this issue of
CROSSTALK will be an aid to you. You may
also want to check the Web sites refer-
enced on page 21. u

Preparing for the New Millennium
Lt. Col. Joe Jarzombek

U.S. Air Force ESIP Director

I enjoyed the November publisher’s note,
“Open Systems Obstacles,” by Reuel
Alder, and I fully agree. The way our
governmental agencies are organized
leads one to falsely believe that open
systems are the best solution. An area
that greatly hinders the open system
concepts, yet is used as the prime
method to meet the future and foster the
open system, is what I call “the power
play” with and within organizations and
management (“Ours must be first if we
want approval.”) Organizations don’t
want to lose their identity, and manage-

ment does not want to share or lose their
power base. Promotion, control, and
budget often depend on this power base
(“My open system is better than yours.”)
This encourages waste, nonquality prod-
ucts, and more open systems. It limits
vision, planning, development, commu-
nications, and user acceptance.

So what can we do? For one, we can
start to educate ourselves on the whole
rather than our piece of the pie. We
should use all resources available
whether they belong to us or to someone
else. (Yes, the commercial world can

sometimes do it better, and two heads
are better than one [usually].) We must
establish measurable goals, a line of
communication that encourages inter-
faces with vision and planning on the
large, and be consistent in our vision and
planning. We should stop being selfish
and seek a known benefit(s) for every
cost before we expend our resources,
time, and budget.

Charles W. Locklin Jr.
Gunter Annex

Maxwell Air Force Base, Ala.

Letter to the Editor

From the Publisher

Better Planning and Cooperation Needed for Open Systems to Work

CROSSTALK The Journal of Defense Software Engineering 3January 1998

If you are not familiar with the year
2000 (Y2K) problem, it is, in effect,
the inability of many microprocessor-

controlled systems to properly handle the
transition from 1999 to 2000 (“99” to
“00” in two-digit representation). The
secretary of the Air Force and the chief
of staff said in a June 24, 1997 letter
that “the Air Force is arguably the most
technologically dependent component of
the United States armed forces”
(CROSSTALK, December 1997). As such,
this seemingly minor problem represents
a potential threat to our ability to sustain
our air and space mission. At this point
in time, no one can determine absolutely
the impact of this event on our mission
capabilities. For the U.S. Air Force,
unknown impact equals unacceptable
risk.

Attacking the Y2K problem is a top
priority for every Air Force organization.
It must be understood that the problem
is not limited to automated information
systems (AIS) and weapons systems, but
includes everything with a microproces-
sor in it: medical equipment, elevators,
building entry-control systems, street
lights, fire-suppression systems, and even
fax machines (to mention but a fraction
of the list). Individual failure of these
items may be only a minor problem;
widespread failure or degradation across
the Air Force is something else entirely.

Tackling this problem is to be done
using existing resources. That means
resources—both dollars and people—
must be reassigned to address year 2000.
This is a monumental task given that the
current cost estimate for the Air Force is
more than $400 million. As we turn our
attention to the cost of fixing our infra-
structure, the cost will continue to
climb. This realignment of resources

requires the active participation of every
leader in the Air Force if corrections are
to be completed and in place by late
1998.

The Air Force established an Air
Force Y2K Program Management Office
at the Air Force Communications
Agency (AFCA) at Scott Air Force Base,
Ill. in February 1995. The goal of this
program is to ensure that no mission-
critical systems are adversely impacted
by the year 2000. An infrastructure of
dedicated professionals has been set up
across the Air Force to tackle this prob-
lem. People at all levels are involved:
major command (MAJCOM), field
operating agencies (FOAs), direct re-
porting units, functionals, and base
level. The program office has published
several guidance packages to cover the
different items that may be impacted
and the roles and responsibilities of
everyone. Everybody must be familiar
with these documents and stay informed
on the issues. If you do not know who
your MAJCOM or unit point of contact
is, give us a call. Everyone in the Air
Force must understand this problem and
be actively involved in minimizing its
impact.

Philosophy
The enduring management philosophy
for the year 2000 by the Office of the
Assistant Secretary of Defense for Com-
mand, Control, Communications, and
Intelligence has been centralized man-
agement with decentralized execution.
The basis of this concept is that com-
manders command, system developers
produce new capabilities, and lifecycle
managers test, field, and maintain sys-
tems and software on a daily basis. Using
this rationale, resident skills can be com-

bined with processes to establish man-
agement structures, assign responsibili-
ties, analyze Y2K defects, develop reno-
vation strategies, replace or retire systems
or components where necessary, and test
and field compliant systems. The cen-
tralized management side of the equa-
tion is Air Force-level day-to-day man-
agement, policy, and direction necessary
to ensure that Y2K changes are effec-
tively and efficiently executed. The bot-
tom line is that all systems and infra-
structure components that impact the
Air Force mission must be tested and
made compliant in time.

Program Initiatives
The Air Force has developed processes
and capabilities to efficiently manage the
execution of the Y2K program. AFCA
has issued direction in the form of three
Air Force Y2K guidance packages:
• The Air Force Year 2000 Guidance

Package is the Air Force plan for
addressing AIS and weapons systems.
This package details the five-phase
process the Air Force uses to assess,
analyze, and implement Y2K solu-
tions.

• The Air Force Year 2000 Infrastruc-
ture MAJCOM/Commanders Guid-
ance Package details a management
approach to solve Y2K infrastructure
problems.

• The Air Force Functional Year 2000
Guidance Package defines the Air
Force functional communities role in
resolving Y2K impacts.
AFCA has developed the Air Force

Year 2000 Web site that is the official
repository for all Air Force Y2K infor-
mation at http://year2000.af.mil. This
site contains links to other Office of the
Secretary of Defense (OSD) and U.S.

The Air Force and Year 2000
Capt. Chris Stephens

Air Force Year 2000 Program Management Office

The Air Force’s Year 2000 Program Management Office is providing the neces-
sary guidance to ensure all systems and infrastructure components that impact the
Air Force mission be tested and made year 2000 compliant by the end of 1998.

Policy and Management

4 CROSSTALK The Journal of Defense Software Engineering January 1998

government agency Y2K pages, e.g., the
General Services Administration reposi-
tory for commercial-off-the-shelf com-
pliance information. AFCA has estab-
lished the Air Force Year 2000 help desk,
which is accessible via the Web site, by
E-mail at afca-afy2k@scott.af.mil, or by
telephone at DSN 576-5761.

AFCA developed the Air Force Auto-
mated Systems Inventory (AFASI) to
inventory all Air Force AIS and weapons
systems and to track their progress to-
ward Y2K compliance. AFASI is the
database used to track progress and
update the Defense Integration Support
Tools. Over 400 accounts have been
established, and all MAJCOMs and
FOAs are updating or validating Y2K
information for systems for which they
are responsible. The AFASI is used to
prepare the status of the Air Force Y2K

effort reports for Air Force Combat
Intelligence Operations Center, Infor-
mation Technology, who in turn pre-
pares reports for OSD.

AFCA has developed a formal system
testing and certification process and
provides hands-on training to Air Force
system certifiers who provide them with
the necessary skills to test and certify
weapons and AIS as Y2K compliant.
The purpose of certification is to ensure
that a system meets a minimum set of
criteria to reasonably make sure it is not
impacted by the year 2000; the imple-
mentation of this program ensures that
certification is applied consistently and
accurately across the entire Air Force.

AFCA conducts periodic Air Force
Y2K working groups that draw together
command Y2K representatives to discuss
issues and resolve problems. The sixth

working group meeting was held Aug. 5-
6, 1997. It was the first session with
colonel representation from the com-
mands. This session truly raised the
awareness levels in the commands.

How to Contact Us
If you have any questions or concerns or
would like to know more about the Air
Force’s Y2K program, contact the Air
Force Year 2000 Program Management
Office (AFCA/ITY) at 618-256-5697
DSN 576-5697 or visit our Web page at
http://year2000.af.mil (government
access only). There you will find the Air
Force Y2K guidance packages, informa-
tion on our testing and certification
program, and reference to many other
Web sites throughout the Air Force,
Department of Defense, government,
and industry. u

Policy and Management

After 18 months of hard work and dedication, the
552nd Computer Systems Group (CSG)—communica-
tions and computer support for the 552nd Air Control
Wing—recently achieved Level 3 according to the Soft-
ware Engineering Institute Capability Maturity Model
(CMM) criteria.

In 1993, the 552nd CSG was assessed at Level 1, the
starting point for all organizations. According to the
group commander, Col. Frank Richardson, when the
group was assessed at Level 1, many people thought the
CSG would never achieve a Level 2, much less a Level 3.

Lt. Col. Vincent Azzarelli, former 552nd Computer
Systems squadron commander who led the CMM Level
3 efforts agreed. “After the satisfactory rating the group
received in the 1996 Quality Air Force Assessment, there
wasn’t a lot of confidence—the thinking within the
group was that this would be too much of an uphill
battle to accomplish in a year,” he said.

However, once the group got motivated, they not
only reached Level 2—their original goal—the Air Force

Communications Agency assessed them at Level 3, which
surprised the group.

“I am extremely proud of what the 552nd Computer
Systems Squadron did to lead the CSG and the wing to a
Level 3 rating. To move from Level 1 to Level 3 was just
an awesome feat,” Richardson said. “In addition, the
support provided by the Air Combat Command Com-
puter Systems Squadron and the Oklahoma City Air
Logistics Center was invaluable.”

After achieving the Level 3 rating, the CSG will im-
prove its Level 3 processes, stabilize these processes, and
get its Level 4 rating. The group hopes to have a Level 4
rating within the next two years.

Cheryl Stefenel
552 CSS/SCWA
Tinker AFB, OK 73135
Voice: 405-739-7524 DSN 339-7524
Fax: 405-734-4372

552nd CSG Receives CMM Level 3 Rating
Cheryl Stefenel and Gordon Fitzgerald

552nd Computer Systems Group

CROSSTALK The Journal of Defense Software Engineering 5January 1998

The year 2000 (Y2K) problem
has many unique aspects, not
the least of which is its size. So I

think it is fair and useful to trim all
those other aspects away and consider it
as nothing but a large project. In other
words, this is not a treatise on any of
the technical issues associated with the
year 2000. It is simply an observation
about the information technology (IT)
industry and how we have handled
large projects in the past.

Many computer experts are loathe
to dwell on the following observation
about large projects, and certainly, we
do not appear to be going out of our
way to communicate it to the people
(management) who must understand it.

“The computer industry has
proven itself unreliable in the past
when it comes to delivering
projects on time.”

This is a kind and gracious way to
state that when it comes to delivering
projects on time, the IT industry must
be considered an abysmal failure. To
drive this point home, the following is a
recap of an audience encounter I have
repeated dozens of times worldwide
over the past year.
Request to audience of IT profes-

sionals: “Raise your hand if you
have a high degree of confidence in
your ability to deliver the year 2000
project on time.”

Response from audience: A forest of
hands raised in affirmation.
So far so good. This reflects what

they are communicating to manage-
ment: “Don’t worry, we have this under
control. We can handle this; we’ll de-
liver it on time—trust us.”

Next request: “Raise your hand if,
over the past three years, you have
delivered 100 percent of your appli-
cations on time.”

Response: A gale of laughter. Why?
Because the notion of 100 percent
on-time delivery is as foreign to the
IT industry as the notion that air-
lines can deliver 100 percent on-
time departures.

Next request: “Raise your hand if
your historical record of on-time
delivery is 90 percent.”

Response: At best, one hand will be
raised, only to be lowered quickly in
submission to roaring laughter and
catcalls of “Liar!” (The hand is low-
ered even more quickly if these
catcalls are coming from users in the
audience.)

Next request: “Raise your hand if
your historical record of on-time
delivery is 80 percent.”

Response: Two percent to 3 percent
of audience might raise their hands.

Next request: “Raise your hand if
your historical record of on-time
delivery is 70 percent.”

Response: Another 2 percent to 5
percent of audience might raise their
hands.
It is not until I get to between 50

percent and 60 percent on-time deliv-
ery that half the audience members
have raised their hands, which means
the historical track record for half the
audience is below 50 percent on-time
delivery. Instead of asking for a show of
hands for each of these requests, I could
instead just provide an industry figure:
86 percent of all applications are deliv-
ered either late or never.

But remember that when I asked if
these same people had a high degree of
confidence in their ability to deliver this
Y2K project on time, they gleefully
gestured “Yes!” This raises an ironic
question of intense interest to manage-
ment: Why are we so confident about
our ability to succeed in the future when
we have failed so miserably in the past?

A Gamble
I then ask the audience if there are any
gamblers in the room. I ask them if they
would like to play a little gambling game
with me. I explain that a gamble has
three components: the ante, the event,
and the payoff. I ask them if they would
put $1,000 of their money in my left
hand (the ante). I will flip a coin (the
event). If it is heads, I will give them
back their $1,000; otherwise, I will keep
their $1,000 (the payoff). The response
is naturally another gale of laughter. It is
a sucker’s bet.

I then point out we are all already
playing the game, except the stakes are
higher—much higher. The ante is your
organization. The event is your proven
ability, not your wishful thinking, to
deliver large projects on time. The
payoff is the ability of your organiza-
tion to function in the year 2000.

The Gauntlet Is Dropped
So here is the gauntlet being dropped at
our feet: Have we, as an industry, made
a point of communicating the real risks
that surround our delivery of the Y2K
project on time? Or are we trying to
placate management? “Don’t worry; be
happy. Everything is all right. No need
for alarm”?

The year 2000 project is a large software project with a deadline that cannot
be missed. Have we, as an industry, made a point of communicating the real
risks that surround the delivery of the year 2000 project on time?

Throwing Down the Year 2000 Gauntlet
Peter de Jager

de Jager & Company, Ltd.

Year 2000

6 CROSSTALK The Journal of Defense Software Engineering January 1998

We have done it before—many
times. The following report from the
Sept. 16, 1997 New York Times con-
cerns the cancellation of a $100 million
IT project that should have been deliv-
ered in September 1997.

“Until a few months ago, Medi-
care officials were consistently
upbeat in their public statements
about the new computer system
and brushed aside the skepticism
expressed by the Congressional
Auditors.”

One could point out this was not a
Y2K project, but does that matter?
They are all big projects, and surely
they obey the laws of large projects.

Surely, they are all affected by Murphy’s
Law to the same degree.

To be sure, the Y2K project is differ-
ent—it has a deadline we cannot miss.
But I do not know if a “real” deadline,
one that cannot be adjusted regardless
of the size of the task, will increase or
decrease the likelihood of success. I
suspect it will decrease our chances; we
will see.

Are you being consistently upbeat to
a fault? Are you guilty of communicat-
ing that all is well when you know
otherwise? If you had to answer the
requests posed in this article before an
audience, I doubt you could not worry
about your past success rate. So pick up
a pen—IT workers should write down

The Tenth Annual

SOFTWARE TECHNOLOGY
CONFERENCE

ÒKnowledge SharingÑGlobal Information NetworksÓ

19-23 April 1998

For further Program and Exhibit information or to register
Conference Management—voice 801-777-7411, DSN 777-7411, dovenbar@oodis01.hill.af.mil

Conference Administration—voice 801-797-0787, dallas@stc.usu.edu

STC ‘98 Website—http://www.stc 98.org

• Capability Maturity Models
• Client/Server and Distributed

Computing
• Configuration Management
• Cost Estimation
• Data Administration
• DII
• DoD Software Policies
• Education and Training
• Embedded Software
• Global Information Issues

• Inspections
• Internet/Intranet
• Knowledge Based Systems
• Measures/Metrics
• Object-Oriented Technology

and Languages
• Open Systems and

Architecture
• Outsourcing & Privatization
• Process Improvement
• Product Line Engineering

• Project Management
• Quality Assurance
• Risk Management
• Security
• Software Acquisition
• Software Engineering
• Software Maturity
• Technology Adoption
• Y2K

Conference Presentation Topics Include:

United States Air Force
United States Army
United States Navy
United States Marine Corps

Defense Information
Systems Agency (DISA)

Utah State University
Extension

Salt Palace Convention Center
Salt Lake City, Utah

Co-sponsored by:

their organization’s proven historical
track record for delivering projects on
time. Then, you can face up to the
following questions:
• Have you communicated your

organization’s success rate to man-
agement?

• Do they understand the risk the
organization is undertaking?

• Do they understand the conse-
quences of failure? Do you? u

About the Author
Peter de Jager has been
active in bringing the
Y2K problem to the
awareness of both the
information systems
community and the
business world at large.

He is perceived by many to be the world
leader in creating awareness for the Y2K
computer crisis. He has written numer-
ous articles on the subject, including the
ground-breaking “Doomsday 2000”
article published in Computerworld, Sept.
6, 1993. He has presented the Y2K prob-
lem to technical and general audiences in
Canada, United States, England, Hol-
land, Finland, Norway, Sweden, and
South Africa. A Canadian citizen, he was
summoned before the U.S. House of
Representatives Science Subcommittee
hearings to testify on the Y2K crisis. He
acts as a special adviser to the United
Kingdom Year 2000 task force and was
recently appointed as special adviser to
the Russian task force. He also is a con-
tributing editor to CIO Canada and a
management columnist for Information
Canada. In January 1997, he began writ-
ing the monthly Y2K column in
Datamation and is a contributing editor
to that magazine. He created the Year
2000 Information Center, which has
more than 180,000 home page accesses
on the site each month.

de Jager & Company Limited
Voice: 905-792-8706
Fax: 905-792-9818
E-mail: pdejager@year2000.com.
Internet: http://www.year2000.com
Speaking schedule: http://
www.hookup.net/~pdejager

Year 2000

CROSSTALK The Journal of Defense Software Engineering 7January 1998

The defense software engineer-
ing community is grappling
with the challenge of changing

code in mission-critical applications so
that they will work properly in the next
century. This conversion saga requires
the implementation of thousands of
changes to application areas that have
not been touched for years.

It is laborious and time consuming
to find areas where code must be
changed. Engineers, for instance, must
wrestle with missing source code, wrong
versions, redundant modules, and sloppy
documentation. They also must deal
with the thousands of additional fixes
that have to be implemented throughout
the conversion project. It is a constant
worry that unwanted changes will fall
unnoticed between the cracks.

Yet, while date-change activities are
taking place, software engineers must
conduct day-to-day revisions to the
same applications. Such modifications
may be implemented to remove bugs
and add new features, functionality, or
enhancements to these applications.

The scope of these day-to-day
changes also is substantial; the code of
mission-critical applications is constantly
being modified for various reasons. For
instance, different versions of defense
applications often must be built to ac-
commodate a multitude of simulation
scenarios, e.g., it is much cheaper to test
a missile’s software under various simula-
tion scenarios than to conduct actual
launches for the same purpose.

Software engineers must constantly
modify an application as it goes through
various lifecycle stages. Additional chal-
lenges include updating documentation

while the changes are in progress, mak-
ing changes to firmware, and factoring
hardware changes into the equation.
None of these revisions are trivial given
the complexity of today’s mission-critical
applications. If not properly managed,
these changes may cause the system to
collapse.

Often, the problem is that the con-
version process and the day-to-day appli-
cation changes are treated as separate
projects, and therefore implemented by
multiple teams without effective coordi-
nation. The development environments
in such organizations could face a crisis
of gigantic proportion with the turn of
the new century.

The Y2K conversion project and
day-to-day changes must be conducted
harmoniously, since work may involve
thousands of changes to millions of
lines of code. Otherwise, changes may
be accidentally left out of the end-user’s
version—an unacceptable mistake.
Lives can be lost if, for instance, an
automated combat response system
triggers an attack against a friendly ship
or aircraft. Developers cannot afford to
deliver software that is only mostly the
right version.

The Software Configuration
Management Difference
Fortunately, development organizations
can potentially deliver 100-percent-
right software by placing Y2K conver-
sion and day-to-day development ac-
tivities under the common umbrella of
software configuration management
(SCM), also commonly referred to as
process configuration management.
SCM strictly organizes the tasks and

activities that maintain the integrity of
software product configurations, ensur-
ing configurations are correct, i.e., that
engineers are working on the right
source code and the right versions of an
application.

Many development organizations,
whether they know it, spend 25 percent
or more of their time trying to manage
their configurations. The good news is
that the defense industry is ahead of the
pack for having recognized the need for
automated SCM long before it became
an established concept in the commer-
cial sector. The bad news is that—al-
though the importance of SCM has
been recognized for years and millions of
dollars have been spent on SCM tools—
few software development organizations
do a great job of SCM.

In fact, most average software devel-
opment projects are only able to keep 75
percent to 80 percent correct software
configurations. Many are lucky to main-
tain a 50 percent to 60 percent correct-
ness, and quite a few projects have soft-
ware product configurations less than 50
percent correct [1]. We should not ex-
pect better results for Y2K conversion
projects unless we implement better
controls than the current state of the
practice. Considering the critical need
for Y2K conversions to be precise, there
is an obvious need for most organiza-
tions to become much better at SCM.

Good SCM
Good SCM occurs when the configura-
tions are continually 100 percent cor-
rect—there are no lost or missing
changes, all the correct software compo-
nents and versions are included in the

Software Configuration Management Helps Solve
Year 2000 Change Integration Obstacles

Tom Burton
InRoads Technology

While defense organizations implement year 2000 (Y2K) changes, they continue to implement many day-
to-day changes on these same applications. These two activities are usually undertaken separately, resulting
in the potential for disjointed development efforts and software crises. Successful organizations will need to
manage Y2K conversion and other changes through effective software configuration management.

8 CROSSTALK The Journal of Defense Software Engineering January 1998

builds, and no changes targeted for the
next release somehow end up in the
current release. Good SCM also provides
proof that the configurations are 100
percent correct at any time in the devel-
opment lifecycle.

In sum, good SCM is achieved
when the software product configura-
tions are 100 percent correct and con-
tain all the wanted changes, when the
development organization is 100 per-
cent certain that these applications are
complete, and when the development
team can demonstrate that these appli-
cations are 100 percent correct.

But how does an organization get to
that point? To be effective, the Y2K
conversion project and the day-to-day
development activities must be imple-
mented concurrently and in parallel
under the umbrella of good SCM. This
means that software engineers must take
all the changes from the Y2K projects
and all the changes from the day-to-day
projects and integrate them together, test
them, merge them, and not leave any-
thing behind.

SCM Pitfalls to Avoid
It is difficult to achieve good SCM
without glitches. Three main issues
significantly impact the ability of the
organization to establish SCM.

First, poor SCM often results in
changes being made, but then not put
back into the product configuration.
This happens when programmers forget
that they have made a particular change,
then the developer reinserts the wrong
version of the program. This typically
occurs when the programmer does not
understand or follow the organization’s
established SCM processes.

A second problem can occur when
parallel and concurrent activities are
taking place: one developer’s changes to
a version overwrite another developer’s
revisions to the same version. This is
known as “change regression,” and
though common, this problem is often
overlooked. Such a scenario typically
occurs when there is no automated
process CM tool in place that can track
all changes to the system, allowing
developers to compare their changes
and select the ones they want to keep.

A third SCM problem occurs during
the build process, when source programs
are compiled and linked to create execut-
able programs. Because the build process
is typically automated, wrong versions
can easily be incorporated automatically
into the executable program. This hap-
pens when developers do not know from
where the build is picking the executable
program; therefore, they create and test
incorrect executables. Many additional
SCM issues also come into play during
the build process, all of which impact
the integrity of the software product
configurations.

Implementing Good SCM
Practices
Three critical practices can prevent
these pitfalls and promote good SCM,
helping achieve the goal of 100 percent
correct mission-critical applications to
users.
• The organization must formally

document its development processes
and use these processes as a road
map to effectively integrate the Y2K
projects and the day-to-day changes
to these applications.

• The team must be educated as to
what constitutes good SCM prac-
tices. Training should be viewed as a
process that spans the development
lifecycle. For instance, training can
teach the team the organization’s
processes, help shorten the evalua-
tion of SCM tools, help deploy
SCM tools, and facilitate implemen-
tation. Many outside resources can
help achieve SCM competency.
Some vendors even offer ready-
made SCM classroom materials and
multimedia computer-based
courses, which can effectively be
used for in-house training.

• The development organization
would do well to rely on leading-
edge process configuration manage-
ment tools, which help automate,
distribute, and merge the changes
associated with the Y2K project and
day-to-day development activities.
These client-server solutions provide
facilities to map organizational and
development processes into the tool.

They also provide a complete audit
trail of all development activities so
that the development environment
can guarantee that the applications
delivered to customers are 100 per-
cent complete.

Conclusion
Organizations that treat Y2K conver-
sion projects separately from day-to-day
development activities are likely to
experience significant trouble and set-
backs. To start on a path toward 100-
percent-correct software, these organi-
zations will have to put these two efforts
under the common umbrella of SCM.
Achieving good SCM is possible in this
framework when software processes
guide the overall development effort,
when developers are educated about
effective SCM practices, and when these
efforts are automated via a leading-edge
process CM tool. This will put the soft-
ware development environment on a
more secure path to success. ◆

About the Author
Tom Burton is CEO of
InRoads Technology,
which specializes in
providing tools and
education for the suc-
cessful implementation
of software configura-

tion management. He has more than 10
years experience in software configuration
management.

Voice: 805-967-4545
Fax: 805-964-4790
E-mail: tburton@inroadstech.com
Internet: http://www.inroadstech.com

References
1. “Configuration Management Industry

Outlook,” InRoads Technology, January
1997.

2. “The Year 2000 Digit Crisis Sounds the
Alarm for Active Control of Software via
Process Configuration Management,”
white paper by Tani Haque, CEO of
SQL Software, November 1996,
info@sql.com.

3. “Creating a Culture for Successful Pro-
cess Configuration Management,” white
paper by Tani Haque, CEO of SQL
Software, July 1997, info@sql.com.

Year 2000

CROSSTALK The Journal of Defense Software Engineering 9January 1998

Standard technical strategies
to achieve year 2000 (Y2K) com-
pliance include replacement, date

expansion, and various forms of
windowing. Recently added to this list
are time-shifting strategies, which sig-
nificantly reduce costs, business risks,
and time to implement and test. All of
the benefits of encapsulation result from
two central facts:
• Analysis and implementation efforts

are minimal.
• It is the inverse of the procedure used

to age data into the future to estab-
lish future data compliance; once one
successfully proves current-year re-
gression testing, there is an implicit
establishment of future-dated regres-
sion testing for the length of time
constant employed.

A different implementation of the en-
capsulation concept can be employed as
a test harness to perform automated Y2K
testing, including dynamic future date
data aging. A description of the auto-
mated testing implementation is
planned for a future CROSSTALK article.

Time-shifting strategies dramatically
reduce the costs of testing by eliminating
the need to build future-dated test cases,
and because they use a complementary
automated regression testing facility,
they are bound into the program logic

with the encapsulation logic. The risk
profile also is minimal because the rela-
tively small amount of affected program
code is at the boundary between the
program and the outside data storage.
Because the file formats do not change,
it also has minimal implementation and
deployment impact.

The automation of date expansion
and procedural logic solutions offer
many of the implementation advantages
of encapsulation, including cost reduc-
tion. Limited windowing methods can
compete with encapsulation on an
implementation cost basis for many
applications. However, in the area of
testing, encapsulation is in a class by
itself. Only encapsulation can bypass the
expense of future-dated testing alto-
gether and, through automation, bypass
the manual construction of unit test
data. As the event horizon draws near,
this aspect of encapsulation will domi-
nate strategy decisions.

Data Encapsulation vs. Program
Encapsulation
The difference between data and pro-
gram encapsulation is in what you
change. The mnemonic rule is you en-
capsulate what you do not change. So, if
you are changing programs but not data,
you are performing data encapsulation.
But if you are changing data but not
programs, you are performing program
encapsulation. A hybrid of the two inter-
poses a layer between program and data
to perform the time shifting.

Encapsulation strategies are similar to
windowing strategies in that a two-digit

year is maintained. However, procedural
logic strategies infer the century from
the data and operate while spanning the
century boundary. Time-shifting strate-
gies, by contrast, shift the data back in
time to avoid the century boundary
altogether. The essential problem with
maintaining a two-digit year is that 2000
> 1999 but 00 < 99. By shifting the
dates back in time, typically by a mul-
tiple of 28 years, we end up with 1972 >
1971 and 72 > 71, which solves the
problem. As long as all dates are shifted
consistently, we receive the same results
for the same input, and the applications
will work until 2027 or 2055. Once all
stored data are in the 21st century, the
time shift can be turned off, at which
time the application will work until
2100. This can be considered a perma-
nent fix.

One absolute requirement with this
method is that no two-digit years can be
stored from before 1929 (for a 28-year
shift) for any date used in a comparison
or a calculation, although there are spe-
cial case exceptions to this rule. The
reason is that once shifted, the date data
must all lie in the same century. This
requirement does not apply to dates used
merely for storage and retrieval.

Encapsulation is unique because the
indeterminacy of assessment is elimi-
nated; this is the major source of delay,
even in windowing and expansion
projects using automated assessment
tools of great power. The single data
entry and exit points in each program
are vastly fewer in number and are essen-
tially decoupled from each other, so that

© 2000 Technologies Corp., 1997. Permission is
granted for reproduction and distribution of this
and the Internet document provided it is complete,
unmodified, and retains all identification includ-
ing this statement, and provided that notification
of recipient is sent to the E-mail address at the end
of this article. All other reproduction and distribu-
tion is expressly forbidden.

This article discusses two variations of time-shifting strategies for year 2000 compliance:
data encapsulation and program encapsulation. A summary of the complete article fol-
lows; the detailed article, containing specific strategies and examples, can be found on the
CROSSTALK Web site at http://www.stsc.hill.af.mil/CrossTalk/crostalk.html.

Encapsulation Solutions for Year 2000 Compliance:::::
A Summary

Don Estes
2000 Technologies Corporation

10 CROSSTALK The Journal of Defense Software Engineering January 1998

one need only examine those points and
the data flowing through them to answer
all questions required for encapsulation.
If any doubts remain, one need only
dump the relevant data files or tables
and look at them.

Data encapsulation works on a pro-
gram-by-program basis, as compared to
program encapsulation, which works on
a system-by-system basis. As a result,
within the same system it is possible to
use data encapsulation for one program,
a standard windowing solution for an-
other, and to leave a third completely
unchanged because date data flows
through the program without being
processed in any way. This may be im-
portant for sites that plan to use encap-
sulation as a short-term fix while prepar-
ing a more comprehensive solution via
windowing, expansion, or replacement.

Program encapsulation may have an
implementation advantage over data
encapsulation, although this will be
significant primarily in larger projects.
This is because programs that do not
cross the time-warp zone boundary
usually do not require modification.

Encapsulation Metrics
Data encapsulation was first proposed by
a major defense contractor in 1992, and
we are now aware of some two dozen
pilot and full projects that use the
method. In addition, both program and
data encapsulation can now be auto-
mated. Early metrics show an average of
1,000 to 2,000 lines of code per day per
programmer for manual data encapsula-
tion implementation, and 10 times this
for automated implementation. Program
encapsulation can be even more effi-
cient, particularly for larger projects.

Conclusion
Encapsulation, although a new strategy
relative to expansion, replacement, or
windowing, is rapidly proving itself as
the most efficient in terms of time and
cost and will increasingly be the center
of consideration as we move toward our
time horizon for failure. u

About the Author
Don Estes is chief technology officer for
2000 Technologies Corporation, for
whom he has designed and implemented
both a data encapsulation and an auto-

mated testing system.
He also works closely
with vendors of limited
windowing, program
encapsulation, and
object code remediation
systems.

He has been involved with COBOL and
database applications for 25 years and
database and mainframe performance
tuning for 10 years. For the last seven
years, he has helped design and execute
projects for the mass modification of large
bodies of source code, primarily for plat-
form migration, using state-of-the-art
automated source language transformation
technologies and automated testing meth-
ods. He is a regular contributor to Peter
de Jager’s Year 2000 mail list, where he is
known for his contributions relating to
Y2K rapid compliance strategies and
automated testing. Estes is a graduate of
Massachusetts Institute of Technology in
physics, with a postgraduate degree from
the University of Texas in educational
psychology.

2000 Technologies Corporation
114 Waltham Street, Suite 19
Lexington, MA 02173
Voice: 781-860-5277, 1-800-756-8046
E-mail: info@2000technologies.com

Year 2000

If your experience or research has produced information
that could be useful to others, CROSSTALK will get the word out.
Not only is CROSSTALK a forum for high-profile leaders, it is an
effective medium for useful information from all levels within
the Department of Defense (DoD), industry, and academia.

Published monthly, CROSSTALK is an official DoD periodical
distributed to over 19,000 readers, plus uncounted others
who are exposed to the journal in offices, libraries, the
Internet, and other venues. CROSSTALK articles are also regularly
reprinted in other publications.

We welcome articles on all software-related topics, but
are especially interested in several high-interest areas.
Drawing from reader survey data, we will highlight your most
requested article topics as themes for 1998 CROSSTALK issues.
In future issues, we will place a special, yet nonexclusive,
focus on

Internet/Intranet
June 1998

Article Submission Deadline: Feb. 2, 1998

Project Management
July 1998

Article Submission Deadline: March 2, 1998

Measure and Metrics
August 1998

Article Submission Deadline: April 6, 1998

Look for additional announcements that reveal more of
our future issues’ themes. We will accept article
submissions on all software-related topics at any time; our
issues will not focus exclusively on the featured theme.

Please follow the Guidelines for CROSSTALK Authors, available
on the Internet at http://www.stsc.hill.af.mil/. Hard copies of
the guidelines are also available upon request. All articles
must be approved by the CROSSTALK Editorial Board prior to
publication. We do not pay for articles. Send articles to

Ogden ALC/TISE
ATTN: Heather Winward, Crosstalk Features Coordinator
7278 Fourth Street
Hill AFB, UT 84056-5205

Or E-mail articles to winwardh@software.hill.af.mil/.
For additional information, call 801-777-9239.

Tracy Stauder
Managing Editor

Call for Articles

CROSSTALK The Journal of Defense Software Engineering 11January 1998

The Defense Logistics Agency
(DLA) maintains 40 million
lines of code within 125 auto-

mated information systems. Over 80
percent of our major systems make use
of date data in some way; half of those
date references are high impact; that is,
likely to adversely affect comparisons,
calculations, or sort processes. DLA’s
System Design Center (DSDC) is a fee-
for-service activity, and funded as we are
by disparate functional proponents, we
have had rare occasion to conduct a
maintenance effort of this magnitude
across multiple system structures. The
degree of planning and coordination
called for to accomplish Y2K-compliant
systems has been for us, unprecedented.
We began our formal Y2K project in
November 1995.

System Impact Assessment
The purpose of conducting an organiza-
tion-wide Y2K impact assessment was to
ascertain the magnitude of the Y2K
problem and to define and prioritize the
remediation requirement. The assess-
ment began in January 1996 with the
development of a questionnaire from a
Y2K project kick-off session and from
industry and government resources.
After several revisions, we had 27 ques-
tions about date practices, levels of cus-
tomer awareness, staff support and the
application environment (available in
the Internet version of this article and
on a secured server at http://
www.dsdc.dla.mil/priv/projects/
year2k/year2k.html). We then identi-
fied points of contact for system-level

developing funding proposals, conver-
sion strategies and plans, and processes
and tools to facilitate analysis, renova-
tion, and testing. Conversion progress is
assessed on a regular basis through status
reports, progressed project plans, and
metric analysis. These actions are in-
tended to mitigate the risk of project
slippage on Y2K conversions.

Expected to be rehosted,
reengineered, or replaced but not
compliant (16 percent, 19 applica-
tions). If replacement initiatives experi-
ence schedule slippage, Y2K failures
could occur within the existing systems
targeted for replacement. We regularly
track replacement schedules so that we
can recommend the initiation of renova-
tion or contingency planning should the
replacement system initiatives experience
schedule slippage. Contingency plan-
ning, an omission perhaps in the early
phases of our project, has increasingly
become a concern. We now acknowledge
the need to plan system-level approaches
to fix Y2K problems in a system before
its scheduled conversion and deploy-
ment has occurred and business area
proponents began development of these
plans in June 1997. The replacement
system progress must also be monitored
to ensure Y2K compliance before de-
ployment.

Expected to remain in place be-
yond 2000 and compliant (33.6 per-
cent, 40 applications). Systems thought
to be compliant were perceived to be at
less risk than those that were not compli-
ant. However, we insist that system
compliance statements be supported

Defense Logistics Agency’s Year 2000 Program
Managing Organization-Wide Conversion and Compliance

Sarah J. Reed
Defense Logistics Agency System Design Center

The Defense Logistics Agency considers the year 2000 (Y2K) problem mission-critical, and we have treated it
as such in planning and executing the largest maintenance effort we have undertaken. The agency kicked off
a formal Y2K project in November 1995 with nearly a full year of planning, preparation, and piloting. This
article discusses our Y2K initiative and our experiences in raising awareness and in assessing, renovating, and
validating our systems. Our program, built on available industry research and our experiences, has been
modified as we have gained fresh insight and assimilated new lessons learned.

interview and survey. Responses were
entered into a database, scrubbed for
consistency, then queried and analyzed.
Data analysis began in mid-April 1996
and ended with publication of the final
report in late June 1996. The extensive
data collection and analysis effort re-
sulted in a fairly comprehensive applica-
tion portfolio profile for DLA standard
automated information systems (AIS).

Our Application Profile
A summarized look at some of the com-
ponent data provides an idea of our size:

Component Total number
Lines of code 39,577,427
Programs 60,060
Screens 33,416
Reports 8,905
Files 236,271
Database tables 10,379

We have 77 languages, the top lan-
guages being COBOL, C, and Assem-
bler. Top database systems are Oracle,
Rdb, and Unify. We use 35 different
hardware platforms, 16 operating sys-
tems, and 311 commercial software
packages for application development
and maintenance.

Findings, Recommendations,
and Resulting Actions
The analyzed systems fell into the fol-
lowing risk classifications determined
according to the various remediation
actions appropriate for them.

Expected to remain in place be-
yond 2000, but not compliant (47.1
percent, 56 applications). We ad-
dressed this critical risk category by

12 CROSSTALK The Journal of Defense Software Engineering January 1998

with the submission of a certification
checklist that describes the system and
the Y2K-related testing effort.

Related Observations and
Recommendations
AISs not included in the survey data.
Several systems were dropped from the
survey for a variety of reasons, e.g., they
were no longer in existence, are now
maintained elsewhere or were too early
in development to be profiled. These
systems were rechecked a year later to
ensure no omissions had occurred.

Database Management Systems
(DBMS). The 15 different database
systems in use have date types and uses
that may or may not be Y2K compliant,
depending on how they are used. We
discovered that having a date field with a
four-position year standard in a DBMS
does not make an application that is
integrated with it automatically compli-
ant. We have investigated and docu-
mented our findings relevant to the
date-handling procedures for various
DBMSs. Where the results of our assess-
ment reveal noncompliant commercial
DBMS products we plan to discontinue
its use or obtain a version upgrade, as
appropriate.

Interface recommendations. Initially,
the Y2K Program office maintained that
all interfaces should be identified, de-
scribed and documented, then negoti-
ated to determine format transition
actions. A vociferous outcry from the
project managers of the largest AISs and
advice from our executive Configuration
Control Board (CCB) convinced us to
concentrate resources on renovation of
the system and filter building to protect
our systems from noncompliant incom-
ing data—and not on self-initiated inter-
face format changes. Ultimately, we did
agree that an interface strategy was nec-
essary even if our base premise would be
not to change the interface formats until
receipt of a specific requirement. This
strategy was delivered in August 1997.

Release Management. AIS upgrades
are normally released to multiple deploy-
ment sites. Y2K considerations pre-
sented the additional challenge of simul-
taneously implementing Y2K releases,
nonyear-2000 releases, and in some

cases, mixed releases. To facilitate ad-
equate implementation planning, we
worked to establish a liaison with our
chief deployment site.

Date formats. The wide variety of
date formats (48) used among the AIS
points out the need for greater standard-
ization of date formats, but conversion
to four-position year formats is not
always practical for large, complex legacy
systems given the risk and time con-
straints associated with them. Because of
the variety of date formats and the
prevalence of two-digit years, we recom-
mended common date modules for
processing and provided these modules
for our more prevalent languages.

Vendor product compliance. The
application impact assessment high-
lighted the need to further investigate
the compliance of hardware platforms
and operating systems. For our organiza-
tion, compliance status of these com-
mercial products must be established
with the product vendor. The Y2K Pro-
gram office continues to pursue the issue
of vendor product compliance and to
publish its findings along with appropri-
ate recommendations.

Awareness. In spite of briefs to senior
officials, we felt that perhaps customer
and user communities were still largely
uninformed even as they began funding
the initiative in January 1997. We subse-
quently began to develop white papers
and briefings that discussed aspects of
interest to the user community. In addi-
tion, we now have regular project fo-
rums to facilitate the sharing of progress,
findings, and concerns throughout the
development organization.

Assessment process. We knew going
into the assessment process that develop-
ing good survey questions, properly
targeting the survey, and effectively
analyzing the results would be a difficult
task for our team, none of whom had a
statistical analysis or survey science back-
ground. We were also concerned about
the quality of the survey responses, often
subjective and estimated. Though satis-
fied with our results and subsequent
recommendations that guided our later
efforts, we would recommend that inclu-
sion of a team member with a statistical

science background would be of benefit
during impact assessment.

Vendor Product Risk
Assessment and Mitigation
In April 1996, we laid out the following
high-level plan for conducting a vendor
product assessment:
• Send letters to all vendors for whom

we had products under maintenance
and ask for a statement regarding
Y2K compliance status of the prod-
ucts we held.

• Enter response data into a repository.
• Analyze for risk classification.
• Recommend appropriate mitigation

actions.
• Track and report outcomes and

status.
Although almost 90 percent of the

vendors responded, we began to discover
a need to collect much more informa-
tion. We had collected some vendor
product information during the impact
assessment; however, not all respondents
provided clear or complete information
about the commercial products inte-
grated with their applications. This
prompted a call for additional informa-
tion.

Identification of Development
Environment Software
In November 1996, we provided our
first report on Y2K compliance in our
vendor products. The resulting recom-
mendations were several, but the chief
recommendation was to expand upon
our original data collection effort. We
still could not confidently describe the
risk in our hardware and system soft-
ware, because we did not have an ad-
equate baseline picture. Where we had
expected to find a similar identification
of products between our organizations,
we found that of 74 products identified
on our chief mainframe machine, 53
were not previously identified by the
application support areas or the acquisi-
tion office. We established possible rea-
sons for the discrepancies, then ardu-
ously worked to resolve them.

Where Are We Now?
There were 276 products identified as
lacking complete compliance informa-

Year 2000

CROSSTALK The Journal of Defense Software Engineering 13January 1998

tion. If the lack of information was be-
cause we could not properly identify the
vendor, the AIS support group was con-
tacted to help identify the product ven-
dor to obtain the required information.
Vendor contact was established or re-
established to obtain new or additional
information product information.

Improve software portfolio man-
agement processes. The great discrep-
ancies between the view of what is
owned, installed, and used was of such
concern to us that we launched a major
software portfolio management improve-
ment effort, wider in scope and more
permanent in its legacy than the Y2K
effort.

Follow up with vendors expected
to provide compliant products at a
future date. For these products, we
notify groups who support applications
integrated with these products, because
the projected date of compliance may be
unacceptably late. We also make them
aware of product upgrade impacts upon
their application. Upgrade strategies will
be developed on a case-by-case basis to
manage application impact and ensure
timely arrival, installation, and testing of
the upgraded product.

Develop independent strategy for
IBM products. A planned operating
system upgrade should replace several,
but not all, currently held noncompliant

products. It was determined that the
Year 2000 Program and OS/390 up-
grade project team would need to work
closely together to accomplish the OS
upgrade and Y2K integration testing in a
timely manner.

Develop testing strategies for those
products vendors have stated are com-
pliant. Ascertaining the state of vendor
products as we were from direct vendor
replies to our questions, research of
vendor-supplied World Wide Web state-
ments regarding Y2K compliance, and
in some cases, relying on third-party-
published studies still leaves a vulnerabil-
ity regarding the actual performance of
the vendor product. We have deter-

ytiroirP ytilibapaClooT yrogetaClooT elanoitaRnoitazitiroirP

1 noitareneGataD noitadilaV aebotdetcepxe;0002raeyrofatadtsetfonoitaraperP
atadtsetfonoitarenegdetamotuaehtaivtroffetnacifingis

tnemeganaMesaCtseT noitadilaV tnerrucpolevedottroffeecudernactnemeganamesactseT
.sesactsetyrutnectxendna,yrutnec-ssorc,yrutnec

ytilibapaCkcabyalP/droceR noitadilaV .stroffegnitset-ersecuderkcabyalperutufrofstupnignidroceR

gnigAataD noitadilaV otytilibaehtaiv,gnitsetK2YrofatadtsetfonoitaraperP
.snoitcasnartatadtsetnisetadecnavda

srotalumiSkcolC noitadilaV .etadmetsystnerrucnahtrehtosetadetalumisotytilibA

2)noisrevnocelif(gnigdirB noitavoneR .troffegnigdirbehtecuderotslootfoesU

3 sisylanAegarevoCtseT noitadilaV .tsetgnirudnoitucexecigolmargorpseifitnauQ

4 noisnapxEdleiF noitavoneR sisabdetimilnonoisnapxesezilituygetartsruo;ytiroirprewoL
.ksirdnatsocdetaicossaoteud

5 rotareneGedoC noitavoneR .stsixeydaerlaytilibapacesuacebytiroirprewoL

6 lortnoCnoisreV .tgM.gifnoC .elbaliavaytilibapaC

lortnoCegnahC .tgM.gifnoC .elbaliavaytilibapaC

7 srezylanAtcapmI tnemssessA .elbaliavaytilibapaC

gnitamitsEkroWfotsoC tnemssessA .elbaliavaytilibapaC

senituorbuSetaD noitavoneR .elbaliavaytilibapaC

snoisrevnoCdetamotuA noitavoneR .elbaliavaytilibapaC

8 gnigreMnoisreV noitavoneR .elbaliavaytilibapaC

gnikcarTegnahC .tgM.gifnoC .elbaliavaytilibapaC

sredniFetaD tnemssessA .elbaliavaytilibapaC

secnerefeR-ssorC tnemssessA .elbaliavaytilibapaC

snosirapmoCeliF noitadilaV .elbaliavaytilibapaC

9 noitazilanoitaRemaNataD tnemssessA .elbaliavaytilibapaC

Table 1. Y2K support tool categories according to DLA internal priorities.

Defense Logistics Agency’s Year 2000 Program: Managing Organization-Wide Conversion and Compliance

14 CROSSTALK The Journal of Defense Software Engineering January 1998

emaN scitsiretcarahCmroftalP desUslooT
ygetartS

desU
foseniL(eziStoliP

)edoC
eniLreptsoC

edoCfo

SCAME ,SMBDyfinU.sCPXINU684;detubirtsiD
troperYFINU,stpircsllehs,edocC,LLECCA

.TPR,retirw

tpircSlrePYFINU noisnapxE 000,36 34.$

SMSID .SMBDSITNAM/arpuS,LOBOC ,FPSI/OSTPALS
neercsllufSITNAM
FPSI,diAeliF,rotide

larudecorP COL771,9
sitnaM8,LOBOC02

smargorp

50.5$

SACOM
noitcudorP

ngisedeR

SITNAM,LOBOC 2etadnaMPALS
XetadnaM

larudecorP ,enil-no16,COL313,421
smargorphctab15

36.$

laicnaniFSMMAS
yrotsiHsdnuF

LOBOC PALS
etadnaM

dnalarudecorP
noisnapxE

160,401 60.1$

-ygolonhceT
detamotuA

egnahCdrowssaP
ytilicaF

rotideIV.gnitideSVMrofhcnebkrowFPSI/OST
-esuoh-nI.snoitacifidomC,llehsXINUrof

rennacsedocCdepoleved

,XETADNAM,PALS
CETADNAM

larudecorP 348,7 82.2$

ediW-SIASMAFD
sisylanA

,IPAyrateirporpa,CLA,LOBOC
,elcarO,yfinU-ataD.erawtfossnoitacinummoC

.sesabatadmocataD-ACdna

depolevedyllaicepS
402Mehtrofloothcraes

LOBOCrofPALS;edoc

A/N 276,610,2 AN

mined that at least minimal spot testing
of in-house versions of products stated
to be compliant is prudent.

Review and Selection of
Support Tools
The objective of this task was to recom-
mend a tool set for use in performing
Y2K assessment, renovation, and valida-
tion. Several sources were used to iden-
tify potential tools and determine appro-
priate tools for further investigation
—product literature, Web sites, expos
and conferences, industry-developed
tool reports, and demonstrations. The
following requirements were identified:
• Where possible, the tools should be

from a major vendor to address con-
cerns about tool maturity and vendor
support.

• The tools should primarily address
the major languages and platforms
used within the DSDC. These were
determined to be primarily COBOL
running on the MVS platform, with
C a distant second.

• Use of the tools should not require
an entirely new method; they should
require minimal training for effective
use, and execute in the environment

to which the development staff is
accustomed.
Support tool categories are described

in Table 1. The higher priority tools (1,
2, 3, etc.) are those tools for which little
or no existing internal capability existed
at the time of the assessment.

Tool Recommendations and
Implementations
Most identified tool needs could be met
with tools already owned. Release man-
agement changes were recommended to
ensure all development sites had the
latest tool versions. New tool recommen-
dations were prioritized, and tools were
brought in for environmental testing
and evaluation prior to purchase. A Y2K
analysis and remediation workshop was
developed primarily for COBOL pro-
grammers, with emphasis on the proce-
dural logic or date windowing solution.

Lessons Learned
• Outdated versions of system software

in the development environment
limited our ability to fully evaluate
Y2K tool offerings.

• Lack of a clear description of the
current or targeted development
environment made planning for the

incorporation of targeted Y2K tools
into a long-term engineering strategy
difficult.

• Once a product was obtained, it was
sometimes difficult to get it installed.
We were unable to complete the
testing of software during the con-
tract period of performance, and it
was frustrating to know how helpful
these tools could be to the develop-
ment staff in accomplishing the Y2K
work.

Certification Process to
Benchmark and Report System
Compliance
Organizational confidence in Y2K com-
pliance statements requires a common
certification process and benchmark. As
with the impact assessment, a process
was initially brainstormed at our first
team meeting, then evolved. The draft
guidance and certification checklist was
piloted on systems believed to be com-
pliant. The pilot results and emerging
Department of Defence (DoD)-level
guidance caused us to revise the process
and checklist before submission to the
executive CCB (available in the Internet
version of this article and on a secured
server at http://www.dsdc.dla.mil/priv/

Table 2. Characteristics of six DLA Y2K conversion projects.

Year 2000

CROSSTALK The Journal of Defense Software Engineering 15January 1998

projects/year2k/year2k.html). The
process was based in part on a premise
that different situations could call for
different certification levels reflecting
various degrees of risk. However, after
presentation to and feedback from the
CCB, we revised the certification docu-
ments again, and the idea of multiple
certification levels was ultimately
dropped.

Certification Process
The process covers internally developed
configuration items only. A separate
initiative addresses the compliance of
vendor-provided software and hardware
products. Our deployment environment
is under the control of another DoD
agency; therefore, our participation in
the compliance of the deployment envi-
ronment is limited to the communica-
tion of issues.

The Y2K Program office provides
certification guidance and a checklist.
The system support group returns the
completed checklist and test documenta-
tion. The program office verifies incom-
plete or inconsistent information and
recommends a certification action prior
to presentation to the customer for final
certification.

Lessons Learned
• In spite of our efforts to streamline it,

the checklist is lengthy, and although
the majority of the questions are “yes
or no,” determining the answers,
unless the process is to be short-
changed, requires a fair amount of
testing. System proponents that
believe their systems are already
compliant tend not to plan resources
for Y2K testing and certification.
Convincing system support groups
and funding proponents of the ne-
cessity to certify Y2K compliance has
been, and continues to be, difficult.

• Industry guidelines or cost models
existed for multiphase conversion
efforts but did not for certification-
only efforts; thus, further hampering
attempts to encourage Y2K effort
and cost planning for systems already
maintained to be compliant.

• In spite of our best efforts to baseline
and keep the certification process

stable throughout the duration of the
program, it is likely going to change
as we evolve the process and as
higher levels within DoD become
increasingly involved in providing
Y2K guidance. This compelling
interest from higher levels of our
organization has at times caused us
to question our early formed tenet
that moving ahead without such
guidance was preferable to waiting
for guidance that might come too
late to be of benefit.

• The process was designed to provide
Y2K test information without being
onerous to the projects. We encour-
aged the use of established software
engineering testing and certification
processes to the greatest extent pos-
sible. However, in working this cross-
organizational initiative, we have
found test process inadequacies and
inconsistencies across the organiza-
tion. A common benchmark, such as
an organization-wide certification
process, is difficult to achieve with-
out the existence of common pro-
cesses.

Pilot Project Study
The Y2K Program proposed pilot
projects as a vehicle to discover early
Y2K lessons learned relevant to the Y2K
change effort. Three purposes would be
served:
• Generation of actual conversion cost

metrics.
• Identification of not-yet-anticipated

Y2K challenges.
• Jump-start of the conversion effort

through these early pilots.

Pilot Project Profile
Table 2 summarizes the characteristics of
six Y2K conversion pilot projects.

Lessons Learned
Estimation of the Effort Involved.
Of immediate note is the variance in
pilot project lines of code (LOC) costs.
For smaller (less than 10,000 LOC)
samples, the LOC cost was higher. We
also found that the lack of a date simu-
lation tool adversely impacted the test-
ing, causing extra delays and a reduc-
tion in the quality of testing.

Renovation. The selected approach
for making a system Y2K compliant
depends on the specific AIS and its de-
sign, interfaces, and implementation
environment. Although smaller, more
modern systems are able to successfully
perform date expansion, larger legacy
systems with multiple interfaces would
require considerable more time and
effort to do so, for both modification
and testing. Expanding the date data
field enables the meeting of standards
but may cause considerable down time
during implementation—partially be-
cause of the lessened ability to incre-
mentally implement converted seg-
ments—and may cause cosmetic display
challenges. In some cases, a procedural
approach is the only risk viable approach
to achieving Y2K compliance in time.

Awareness and Communications. A
system can be Y2K-compliant without
conversion of the user-interface layer,
i.e., report and screen displays, the
modification of which could increase
remediation costs and schedules unac-
ceptably. In one of the pilots, we found
that the number of on-line programs
that needed to be changed increased
from six to 60 with the remediation of
the user-interface layer. It is important
for the user to understand the impacts of
various system, interface, and user inter-
face renovation choices.

Customers and users also need to
know that delays in replacement system
implementation increases the Y2K fail-
ure risk to the existing system. Addition-
ally, intention to replace a legacy system
does not entirely relieve the customer of
Y2K-related costs; contract modifica-
tions and additional testing and certifi-
cation activities may still be required to
produce Y2K-compliant new systems.

At the time of the pilots, effective
Y2K communication within DSDC was
limited; therefore, tool and technology
capabilities used by one pilot were not
effectively used by all pilots. To compen-
sate for this lack of communication, the
program office planned and conducted a
series of sessions for projects to share
ideas, concerns, and information.

Tools. In-house tool capability was
assessed as being sufficient for main-
frame-based application assessment and

Defense Logistics Agency’s Year 2000 Program: Managing Organization-Wide Conversion and Compliance

16 CROSSTALK The Journal of Defense Software Engineering January 1998

renovation phases. Tools for other plat-
forms are becoming increasingly avail-
able. However, problems related to the
lack of a robust test environment and
date simulation utilities caused delays
during pilot testing efforts. This realiza-
tion from pilot efforts escalated our tool
assessment and procurement initiatives.

Testing. Testing time and effort was
underestimated for all pilots. In one
pilot, test processes were lacking; for
example, system and functional test
plans were developed but lacked the
specificity required to sufficiently ad-
dress the Y2K concerns. The addition of
tools and training, without effective test
processes, would probably not be suffi-
cient to ensure success of the effort.
Consequently, we incorporated testing
expertise to guide the test plan develop-
ment and implementation, but the re-
sponsibility for the planning and imple-
mentation remained at AIS level. Each
AIS was encouraged to develop a testing
strategy for specific needs related to test
environments, test tools, test utilities,
and test data. The program office pro-
vides support in tool procurement, in-
stallation, and training.

Release Management. Close coordi-
nation with deployment environments is
indicated not only to ensure adequate
support for the installation of support
tool releases but also for a larger-than-
normal number of new application re-
leases into the field. Where file conver-
sions are involved, coordination is
particularly important as other non-
standard DLA systems use file formats
passed by our standard systems.

Observations and Conclusions
Throughout this article, we have dis-
cussed our approaches, results, and les-
sons learned as they pertain to significant
aspects of our effort. Here we offer some
overall observations and conclusions.

Provide a Sufficient Resource
Investment
Resourcing Y2K initiatives is not a one-
time commitment because resourcing
will continuously be a challenge at all
levels of Y2K execution. In the current
DoD environment, a key strategy for
dealing with resource shortages is con-

tracting. But even our contractors are
having difficulty retaining enough
people to execute their contracts in a
tight, competitive labor market. Another
challenge we have had in the govern-
ment is in keeping the noncontracted,
what we call organic personnel commit-
ments stable. We are constantly downsiz-
ing—even offering incentives for early
retirement—and no resource commit-
ment is a sure bet.

Provide Sufficient Investment in
Testing
Every pilot incurred slowdowns and
obstacles during the testing phase. As
discussed, we discovered that variances
in testing procedures within the organiza-
tion affected attempts to baseline a certifi-
cation process. Effort expended in defin-
ing Y2K-specific testing practices and in
building adequate test environments are
worth the front-end investment.

Be Prepared for High-Level
Visibility
We recognize the benefit of high visibil-
ity as the crucial components of sponsor-
ship, and commitment can wax and
wane without it. However, visibility can
have negative impact. We quickly be-
came swamped with project and progress
requests for information from various
government agencies. In hindsight,
designation of a communications officer
would have been invaluable in answering
these calls for information. Lack of such
a resource affected our ability to stay
focused on developing strategy and plans
and on implementation to the desired
degree.

Summary
Following is a recapitulation of what we
have found to be the most critical factors
affecting our Y2K remediation effort:
• Sustaining organizational commit-

ment.
• Understanding the organizational

baseline at the outset of the initiative.
• Understanding the challenge in ap-

plying standard remediation solu-
tions across an organization with
disparate processes.

• The adequacy of testing tools and
processes.

• Focus on the underlying hardware
and system software is a major com-
ponent of the total picture. We did
not anticipate the level of work and
difficulty involved in this aspect at
the outset.

• Obviously, remediation for systems
with future date projections should
be a first priority. But there must also
be prioritization and contingency
planning within the system effort,
because failures will surely occur
even as the system is being renovated.

• Carving out enough time for inte-
grated testing of renovated applica-
tions with upgraded system software
and hardware may turn out to be our
biggest challenge. u

About the Author
Sarah J. Reed began
her DoD career with the
DSDC in 1987. In that
time, she has been in-
volved in or led a num-
ber of projects, such as
corporate-wide metrics

collection, analysis and implementation,
the Organizational Culture Initiative, and
fee-for-service implementation.

In 1991, she worked with the DLA
Information Technology Policy Board
representative to review, suggest, and
comment on DoD policy, some of which
shapes the DoD mission today. In 1992,
she led the effort to establish a baseline
Capability Maturity Model assessment for
the organization. In December 1995, she
accepted the challenge to lead the Y2K
Program at DSDC. In December 1997,
she became a private consultant on Y2K
issues.

DSDC’s Year 2000 Program office is
now being managed by David Koppy.
For further information on DSDC’s
Year 2000 Program please, contact

Cindy Nickoson
DLA Systems Design Center
Columbus, OH 43213
Voice: 614-692-9296 DSN 850-9296
Fax: 614-692-8393 DSN 850-8393
E-mail: cnickoson@dsdc.dla.mil

If you have questions for the author,
please contact

Sarah Reed
CompuWare
Voice: 614-847-8212

Year 2000

CROSSTALK The Journal of Defense Software Engineering 17January 1998

Software inspections are a pow-
erful mechanism to help detect
and correct the Y2K problem.

Software inspections call for a close and
strict examination of software artifacts
against the standard of excellence set by
the organization, significantly improv-
ing defect detection and removal capa-
bilities. By explicitly setting the stan-
dard of excellence for software products
to operate correctly before, during, and
after 2000, and by conducting software
inspections on software products
thought to be date sensitive, the respon-
sible manager is taking an important
and prudent step to meet the challenge.

To reason effectively about Y2K
compliance at the program level, the
reviewer must understand the standard
date format and treatment by system
date routines, identify and verify inter-
nal date usage, identify and verify exter-
nal file date usage, and understand the
context of date usage within the appli-
cation domain. Specifically:
• Reasoning about internal date usage

includes verifying date representa-
tions, evaluating date transforma-
tions and logical expressions, identi-
fying variable names that contain
date types, and recognizing and
handling the leap year anomaly. Not
all problems lie in looking forward;
looking-backward calculations must
also be identified and assessed.

• Reasoning about external file date
usage includes identifying external
system interfaces and verifying stan-
dard date format for input and
output date records.

• Reasoning about the context of date
usage within the application domain

requires an understanding of the
time horizon to failure (THF). For
example, the THF for a 30-year
mortgage is 1970; for an enterprise
five-year plan, 1995; for a four-year
motor vehicle license, 1996; for a
two-year credit card issuance, 1998;
and for various annual deadlines,
1999.

To help practitioners uncover all
possible Y2K problem situations, the
following Y2K compliance checklist is
added to the standard of excellence set
by the organization. This checklist is
drawn from the software inspections
course and lab I offer. These checklists
are organized along a common frame-
work that includes completeness, cor-

Software Inspections and the Year 2000 Problem
Don O’Neill

Independent Consultant

The year 2000 (Y2K) problem promises to impact information systems of all kinds. With
no silver bullet available, the responsible manager must take a variety of actions to detect
and correct this problem. This article provides a compliance checklist to aid in Y2K prob-
lem detection and correction.

Year 2000 Compliance Checklist

1. Has the product component been assessed for Y2K compliance?
1.1 Is Y2K compliance specified as standard date format (such as,

YYYYMMDD)?

1.2 Are date-related system services identified and Y2K compliant?
1.2.1 Are system date routines identified and Y2K compliant?

1.3 Are all date-related nodes and flow graphs identified and Y2K
compliant?

1.3.1 Is internal date usage identified and Y2K compliant?
1.3.1.1 Are all date representations identified and Y2K compliant?
1.3.1.2 Are all date transformation routines identified and Y2K compliant?
1.3.1.3 Are all date-related names identified and Y2K compliant?
1.3.1.4 Are all date calculations identified and Y2K compliant?
1.3.1.5 Are all date uses in logical expressions identified and Y2K compliant?
1.3.1.6 Are all leap year computations identified and Y2K compliant?
1.3.1.7 Are all “looking backward” (from the year 2000) calculations

identified and assessed as Y2K compliant?
1.3.1.8 Are all “looking forward” (from the year 2000) calculations identified

and assessed as Y2K compliant?
1.3.2 Are all files identified and Y2K compliant?
1.3.2.1 Are all external system interfaces identified and Y2K compliant?
1.3.2.2 Are all input and output date records formatted as standard date

format (such as, YYYYMMDD) and Y2K compliant?
1.3.2.3 Are all extended semantics (embedded dates and sort keys)

identified and Y2K compliant?
1.3.2.4 Are all imported files identified and Y2K compliant?
1.3.3 Has the Year 2000 Time Horizon to Failure (THF) been identified for

the application?
1.3.3.1 What is the THF for the application?

18 CROSSTALK The Journal of Defense Software Engineering January 1998

rectness, style, rules of construction,
multiple views, technology, and
metrics. The Year 2000 Compliance
Checklist is one of the multiple views
for design and code. For more informa-
tion on this software inspections train-
ing and the results it obtains, please
visit http://members.aol.com/
ONeillDon/index.html. u

About the Author
Don O’Neill is an experienced software
engineering manager and technologist
currently serving as an independent con-
sultant. Following 27 years with IBM’s
Federal Systems Division, he completed a

three-year residency at
Carnegie Mellon
University’s Software
Engineering Institute
under IBM’s Technical
Academic Career
Program. As an inde-

pendent consultant, O’Neill conducts
defined programs to manage strategic
software improvement, including an
organizational software inspections pro-
cess, directing the National Software
Quality Experiment, implementing soft-
ware risk management on the project,
conducting the Project Suite Key Process
Area Defined Program, and conducting

Global Software Competitiveness assess-
ments. He served on the executive board
of the Institute of Electrical and Electron-
ics Engineers (IEEE) Software Engineer-
ing Technical Committee and as a distin-
guished visitor of the IEEE. He is a
founding member of the National Soft-
ware Council and the Washington, D.C.
Software Process Improvement Network.

9305 Kobe Way
Gaithersburg, MD 20879
Voice: 301-990-0377
Fax: 301-670-0234
E-mail: ONeillDon@aol.com
Internet: http://members.aol.com/
ONeillDon/index.html

Ownership and Control Issues in Architecture-
Based Acquisition of Product Lines

Dates: Jan. 13-14, 1998
Location: Pittsburgh, Pa.
Subject: The objective of this meeting is to produce a

short point paper articulating the acquisition busi-
ness models identified at the Salem ’97 workshop.

Sponsor: Software Engineering Institute
Contact: James Withey
E-mail: jvw@sei.cmu.eu

Configuration Management Seminars: (1) Basic,
(2) Advanced, (3) Comprehensive

Locations: Bethesda, Md.; San Diego, Calif.; Wash-
ington, D.C.; Las Vegas, Nev.

Dates: Jan. 26 – March 11. Contact Dana Marcus for
specific date of each seminar.

Subjects: (1) Basic configuration management (CM)
course for individuals in the configuration field for
six months or longer. The latest CM standards and
requirements; scope and elements of a good CM
plan; English release requirements; establishing
appropriate baselines; managing CM status ac-
counting records and reports; guidelines for han-
dling and documenting variances, etc. (2) Ad-
vanced CM course for individuals possessing the
basic knowledge of the CM field; impact of COTS,
NOTS, and NDI on CM requirements for Depart-
ment of Defense procurement; developing models
and metrics for CM products and processes; estab-
lishing comprehensive change management and
corrective action systems. (3) A comprehensive
methodology for implementing CM; incorporating

the best practices from industry leaders, the latest
technology, and the newest standards, guidelines,
and requirements, including the new standards J-
STD-016, ISO122207, US 122207, EIA-649, and
MIL-HNBK-61.

Sponsor: Technology Training Corporation
Contact: Dana Marcus
Voice: 310-534-3922
E-mail: dmarcus@ttcus.com

First Workshop on Biologically Inspired Solutions
to Parallel Processing Problems (BioSP3)

Dates: March 30 – April 3, 1998
Location: Orlando, Fla.
Subject: This workshop seeks to provide an opportu-

nity for researchers to explore the connection be-
tween biologically based techniques and the devel-
opment of solutions to problems that arise in
parallel processing.

Sponsor: IEEE Technical Committee on Parallel Pro-
cessing (tentative)

Contact: http://www.ee.uwa.edu.au/staff/
zomaya.a.html/BioSP3.html

IEEE Computer Society International Conference
on Computer Languages 1998

Dates: May 14-16, 1998
Location: Loyola University Chicago, Chicago, Ill.
Sponsor: IEEE Computer Society, Technical Commit-

tee on Computer Languages in cooperation with the
Association for Computing Machinery Special
Interest Group on Programming Languages.

Contact: http://www.math.luc.edu/iccl98/

Coming Events

Year 2000

CROSSTALK The Journal of Defense Software Engineering 19January 1998

The lifecycle cost to maintain software can exceed
the costs to develop the original code. This is particu-
larly true for software systems that are expected to

continue in service for 20 to 30 years, in which maintenance
can account for 50 percent to 70 percent of the total lifecycle
costs for a software system. Of these maintenance costs, testing
can account for 50 percent or more of the costs [1]. Thus, the
cost to test modified code can be a substantial portion of the
total costs of keeping legacy code alive.

These factors hold true for Y2K fixes. To eliminate a
system’s Y2K problem requires that you identify what parts of
the software need modification, make the conversions, and test
the conversions. According to [4], more than 60 percent of all
Y2K costs will go to testing. This figure can be as high as 70
percent for some projects [5].

In a regular system’s lifecycle, the maintenance phase in-
volves two key activities: fixing faults in existing code and
adding new functionality to existing code. Y2K conversions
can be placed into either category, depending on your perspec-
tive and the age of the system. If you view Y2K problems as
fixing programmer mistakes, your fixes would be considered
fault eradication. (This makes sense if the systems were built
fairly recently.) If you view the Y2K problem as software that
outlived its intended lifespan, you view Y2K conversions as
adding functionality to aged systems. (This makes sense for
systems that incorporate code created many years ago.)

Regardless of how the Y2K issue is viewed, modified code
should be tested, and unmodified parts of the system should
be retested to ensure that each “fixed” system is Y2K immune.
As already stated, these testing expenses can be pricey. One
reason is that few testing tools are smart enough to automati-
cally know how to minimize testing costs for modified code.
However, you would think a “smart” tool could determine
exactly what code needed to be retested. It would be great if
such an automated tool existed to distinguish that kind of
code in a “optimized” mode, i.e., determine the least amount
of code that needed to be retested to demonstrate that a code
conversion was correct.

Unfortunately, no such tool exists. This suggests that there
is a serious need for tools that seamlessly integrate with Y2K
conversion tools and that test Y2K conversions. If such tools
existed, the total global cost of the Y2K problem could be

reduced while still providing sufficient confidence that Y2K
conversions were correct. This could add up to astronomical
savings, as the world-wide cost for fixes alone is $600 billion,
not to mention legal liability costs that could exceed $1 tril-
lion [2, 3].

Following is a description of what testing tools must ac-
complish under any scenario to provide the appropriate levels
of confidence. In short, it is something like a checklist of test-
ing processes that certify Y2K compliance.

Coverage Testing
The absolute minimal requirement is that modified code be
tested (commonly referred to as “exercised”). If modified code
is not exercised, it is not possible to know what its behavior
will be. To exercise code, generate test cases that execute the
conversions, then employ simple coverage analysis to analyze
whether modified statements are hit. This can be done easily if
• The conversion tool places comments in the converted

code.
• The coverage tool’s parser looks for those comments.
• The coverage tool then places instrumentation to record

when those statements are exercised.
Once coverage testing is successfully completed, you know that
all code modifications have been executed at least once.

But from a quality perspective, it is imperative to recognize
that it is barely sufficient to merely reach statements, because
there are other forms of coverage testing, e.g., dataflow, that are
better at fault detection than statement testing. For example,
dataflow testing would allow you to test “all uses” of the year
fields that were modified. Or if you attacked your Y2K prob-
lem by adding complex conditions, e.g., changing

if y1 < y2 then
years_apart = |y2 - y1|

to

if (((y1 < y2) and (y2 < 00)) or ((y1 >= 00) and (y2 >= 00))) then
years_apart = |y2 - y1|

else if (y1 <= 99) and (y2 >= 00) then
years_apart = (99 - y1 + 1) + (y2 - 00)

to avoid increasing the size of year fields, you should use a
coverage testing approach like multiple-condition coverage

Certifying Year 2000 “Fixes”
Jeffrey Voas

Reliable Software Technologies

There is much less talk about certifying the correctness of year 2000 (Y2K) con-
versions than there is about how to make the conversions. Certifying that Y2K
“fixes” were appropriate can be done easily by using a combination of different
software testing techniques. This article describes these techniques and why they
should be considered essential processes in any Y2K conversion solution.

20 CROSSTALK The Journal of Defense Software Engineering January 1998

(MCC) or condition-decision coverage
(C/DC). Note that dataflow, MCC,
and C/DC coverage testing are more
thorough than statement testing.

However, coverage testing is only one
ingredient in Y2K certification. After all,
even complete coverage testing of all
code modifications does not imply that
all Y2K conversions are correct. All fixes
could be correct, but the fixes may have
broken system functionality; that is, all
the year fields may now work properly,
but other functionality that used to
work now does not. (Such a situation
could occur because of a lurking fault
that could not be triggered until a year
greater than 1999 is used.)

This potential problem needs to be
mitigated by retesting existing function-
ality. To do so, regression testing can be
employed, which is the next ingredient
needed for Y2K certification.

Regression Testing
Regression testing employs a suite of test
cases (usually with respect to the require-
ments or specification) to ensure the
outputs from the original code and con-
verted code are identical for each mem-
ber of the suite. Note here that it is as-
sumed that for each member of the
suite, there should be identical behavior
for both versions of the code. Regression
testing provides evidence that the con-
versions have not affected any function-
ality that should have remained unaf-
fected.

System-Level Testing
But there will also be system-level inputs
that we would want to result in different
outputs (between the converted and
unconverted programs). If this were not
the case, why was the software con-
verted? To determine that the new ver-
sion is doing what you want for these
inputs, employ system-level testing,
which will employ test cases that repre-
sent events beyond 1999. System-level
testing will serve as our last ingredient in
Y2K certification.

It is important to note that system-
level testing is neither a substitute for
coverage testing nor does coverage test-

ing replace system-level testing. It is
possible to exercise all code conversions
and not discover that a conversion fails
in the context of a test that represents an
event after 1999. Likewise, it is possible
to system-level test with a wide variety of
post-1999 scenarios that do not exercise
all modifications. Thus, both forms of
testing are needed for Y2K certification.

Summary
To certify that code is Y2K compliant,
three different forms of testing should be
employed:
• Coverage testing to exercise fixes.
• Regression testing to see whether

new code breaks other system re-
quirements that are not related to
calendar dates.

• System-level test to see how the new
system handles events past 1999.
These techniques do not guarantee

that the conversions will integrate into
your system and work correctly under all
scenarios. Except for exhaustive testing,
testing can never make such guarantees.
Instead, testing provides confidence.
And for legacy Y2K systems, that is what
is needed after these “tried-and-true”
systems are upgraded to handle events
after 1999.

Since testing can account for 50
percent of maintenance costs, if you
were planning to spend X dollars on
conversion, the additional certification
costs could double your cost to 2X. But
without taking these defensive measures,
you could get fooled into thinking that
your Y2K problem is behind you when
it is not. Given that you have taken pro-
active measures to solve your Y2K prob-
lem, this is a situation you will want to
avoid.

I have deliberately simplified the
Y2K certification process down to a
handful of traditional testing ap-
proaches. Admittedly, there are more
advanced certification processes that
could be employed to provide similar
results. Given that much Y2K conver-
sion is ongoing without assurances that
the conversions are correct, it should be
more beneficial for practitioners to lay-
out the basic needs for Y2K certification

than to layout a Utopian “pipe dream,”
such as proving beyond all doubt that
the legacy system is correct. u

About the Author
Jeffrey Voas is a co-
founder of and chief
scientist for Reliable
Software Technologies
and is currently the
principal investigator on
research initiatives for

the Defense Advanced Research Projects
Agency and the National Institute of
Standards and Technology. He has pub-
lished over 85 refereed journal and confer-
ence papers. He co-wrote Software Assess-
ment: Reliability, Safety, Testability (John
Wiley & Sons, 1995) and Software Fault-
Injection: Inoculating Programs Against
Errors (John Wiley & Sons, 1997). His
current research interests include informa-
tion security metrics, software dependabil-
ity metrics, software liability and certifica-
tion, software safety and testing, and
information warfare tactics. He is a mem-
ber of the Institute of Electrical and Elec-
tronics Engineers and he holds a doctor-
ate in computer science from the College
of William & Mary.

Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
Voice: 703-404-9293
Fax: 703-404-9295
E-mail: jmvoas@rstcorp.com

References
1. Myers, G., The Art of Software Testing,

John Wiley & Sons, 1979.
2. “Year 2000 Prophet Preaches $600

Billion Digital Fix,” Computer News
Daily, Oct. 1, 1997.

3. Hassett, D., “Frequently Asked Ques-
tions About the Year 2000 Problem,”
available at http://www.y2k.com/
legalfaq.htm.

4. Tech-Beamers, “White Paper Year 2000
Focus On Testing,” May 10, 1996,
available at http://www1.mhv.net/
~techbmrs/tstgwp.htm.

5. Scheier, R. L., “Year 2000: Testing Can’t
Wait,” Computerworld, Oct. 20, 1997,
available at http://
www2.computerworld.com/home/
online9697.nsf/All/971020test.

Year 2000

CROSSTALK The Journal of Defense Software Engineering 21January 1998

Air Force Materiel Command (AFMC) Year 2000
Bomb Squad Unit

http://www.cisf.af.mil/seit/seit/progmgmt/y2kBSU.htm

• Compliance strategy (ITW/AA).
• Program management plan (ITW/AA).
• Compliance checklist.
• Working group.
• Overview briefing.
• Test plan.
• Test schedule.
• Verification cross-reference matrix.

U.S. Air Force Year 2000 Page

http://year2000.af.mil

• Year 2000 infrastructure guidance package.
• Spreadsheets.
• Automated information systems certification and

testing.
• Certifier training slides.
• Certification-tracking documents.
• Compliance checklist.
• Product certification information and resources.
• Briefings.
• Working group minutes.
• Newsletter.
• Best practices.

Software Technology Support Center (STSC)

http://www.stsc.hill.af.mil/RENG/index.html#2000

• Articles.
• Database of commercial year 2000 tools and services.
• The year 2000 tools and services lists can be down-

loaded on this page or customized lists are available.
• Year 2000 tool evaluation reports.
• Provides year 2000 services to other Air Force (and

some government) organizations.
• Links to other year 2000 pages.

Defense Information Systems Agency (DISA)
Office of Chief Information Officer (CIO)

http://www.dsdc.dla.mil/priv/projects/year2k/year2k.html

• Year 2000 awareness.
• Articles.
• Presentations.
• Conference information.
• Status of DISA’s defense megacenters.
• Compliance, test, and evaluation information.

The Year 2000 Information Center

http://www.year2000.com/cgi-bin/y2k/year2000.cgi

• Articles.
• User groups.
• Vendor links.
• Products to build awareness.

Army Year 2000 Page

http://www.army.mil/army-y2k/

• Project change of century action plan.
• Briefings.
• General information (articles, etc.).

U.S. Army Year 2000 Technical Integration Center
(TIC)

http://www.hqisec.army.mil/y2kweb/

Compliance information on
• Personal computers.
• Personal computer Y2K test results.
• Mini computers and Y2K.
• Network equipment.
• Commercial software.
• TIC Y2K capabilities.

Defense Logistics Agency

http://www.dsdc.dla.mil/priv/projects/year2k/year2k.html

• Briefings.
• Certification guidance and checklist.
• Process and tools.
• Year 2000 issues.
• Reports.

Office of Information Technology Year 2000
Information Directory
CIO Council Subcommittee on Year 2000

http://www.itpolicy.gsa.gov/mks/yr2000/y201toc1.htm

• Conferences.
• Best practices.
• White papers and articles.
• International year 2000 links.

Federal Aviation Administration Year 2000

http://www.faa.gov/ait/year2000/2000home.htm

• Year 2000 guidance.
• Year 2000 presentation.
• Compliance criteria.

Year 2000 Web Sites
These Internet sites show how the defense software commu-
nity is tackling the year 2000 problem.

22 CROSSTALK The Journal of Defense Software Engineering January 1998

Warren Keuffel recently
criticized the CMM in
“Coding Cowboys and Soft-

ware Processes” (CROSSTALK, August
1997). He spoke of his unsuccessful
implementation of the CMM as part of
a Software Engineering Process Group
(SEPG). On the basis of this failed at-
tempt, he assumes that the model is
flawed and is a bad idea.

This is a common problem that I see
while working with software organiza-
tions. Despite success that numerous
organizations have had with the CMM,
many believe the model is a bad idea
because it did not work for them. They
need to step back and look at whether
the fault lies with the model or with
their method of implementation.

There are a variety of ways to define
and deploy usable processes in software
organizations. The challenge is to find
the right combination of definition and
deployment for your organization. This
article discusses ways to define and de-
ploy usable processes to build an organi-
zation standard software process (OSSP).

Defining Usable Processes
The appropriate way to define usable
processes depends on the organization’s
culture or situation. Each method below
includes examples of appropriate organi-
zational culture or situations.

Process for Hire
One way to define usable processes is to
buy the processes from a vendor, much
like buying a set of encyclopedias. The
organization can buy the entire set or
buy the processes one volume (one key

process area) at a time. Of course when
you buy the process, you will need to
buy additional services like training,
templates, and other associated assets.
The organization’s improvement invest-
ment is primarily financial.

Although many mature organizations
warn that you must grow your own
processes, Process for Hire can be suc-
cessfully implemented in two situations.
The first is when a new organization has
just been formed; there is no culture to
fight at this point, and people are likely
to welcome a defined direction. The
second circumstance is when the organi-
zation is given a mandate to achieve a
certain maturity level by a pre-defined
time or lose a critical customer or financ-
ing. The organization must change
quickly or it will disappear.

No matter which circumstance the
organization faces, the organization must
break the purchased processes down,

make alterations for their particular
environment, and put the processes back
together. This procedure ensures that the
process will work in the given environ-
ment and that the organization takes
ownership of the process.

The Ivory Tower
Also known as the “Ten Command-
ments” approach, this method isolates a
handful of experts in a workspace to
develop all the processes for the organi-
zation to follow. When they are fin-
ished, they bring the processes down
from their “tower”—possibly written
on stone tablets for effect—and expect
the organization to follow them as
written. They impart their collective
experience to the organization and
expect it to be accepted solely on faith.

This method works well when the
organization has a large number of jun-
ior engineers who lack the experience to

A Good Idea Still Requires a Good Implementation
David P. Quinn

National Security Agency

No matter how good an idea may be, a poor implementation may lead people to believe it is a bad
idea. The Capability Maturity Model (CMM)SM is no exception. Many organizations have not
had success implementing the CMM and believe it to be a bad idea. To help organizations in their
implementation of the CMM, this article presents different implementation approaches and the
organizational situations where they are most appropriate.

Capability Maturity Model and CMM are ser-
vice marks of Carnegie Mellon University.

Table 1. Methods of definition.

Software Engineering Technology

dohteM citsiretcarahC noitautiS/erutluC

eriHrofssecorP rehtonagnisU
noitazinagro ' .sessecorps

ssecorP.snoitazinagropu-tratS
.detadnamsitnemevorpmi

rewoTyrovI .strepxeroinesfomaeT .erutluclamrofnI
.ecrofkrowroinuJ

noitcAssecorP
smaeT

.esitrepxeno-sdnaH ssecorpmret-gnoL
.hcaorppatnemevorpmi

pUelbbuB sessecorpgnikroW
.dettimbus

tnemevorpmissecorpgnortS
.ecnatsiser

noitceleS-fleS .detanimonerasessecorP .tsixessecorpdoogfostekcoP

gniwodahS dnastcejorpswollofGPES
.mehtstnemucod

.evorpmiotysubooT

CROSSTALK The Journal of Defense Software Engineering 23January 1998

dohteM citsiretcarahC noitautiS/erutluC

yadnoMgnitratS .etadtratsdetadnaM .ecnamrofnocetaidemmI

retaWehttseT .ssecorpgnitsettoliP erofebsessecorpnevorP
.noisremmi

spaGehtnilliF .secitcarpgnissimedivorP ssecorproysubooT
.ecnatsisertnemevorpmi

develop usable processes. It is especially
effective in an organization that prides
itself on its informal atmosphere. By
selecting senior experts to define the
processes, the organization uses the
people who probably forged that infor-
mal culture and can best alter it to a
more mature environment.

However, the organization must be
cautious when using this method, espe-
cially when the senior experts have not
been technically involved in software
development for some time. The “ex-
perts” could develop processes that do
not match the current working environ-
ment or culture. This method therefore
requires constant communication with
the workers to ensure they understand
how the process was developed.

Process Action Teams
The Ivory Tower method should not be
confused with the use of Process Action
Teams (PATs). PATs focus on one pro-
cess area or one thread of software engi-
neering that covers multiple process
areas, whereas the Ivory Tower approach
addresses the entire process improve-
ment effort. PATs are composed of
hands-on technicians with up-to-date
expertise in the area being defined. They
define the process based on current
practices, then create additional pro-
cesses that fill specific CMM key process
area requirements.

This is the most common approach
to define processes, and is usually used
to implement improvements incremen-
tally in organizations that view process
improvement as a long-term investment.
It requires the SEPG to handle the insti-
tutionalization aspects and track the
interfaces between process areas.

Bubble Up
Nothing breeds success like success. This
method requires SEPG members to
document how successful projects oper-
ate, then use those processes to form the
OSSP. The key to making this method
work is to define the environment in
which the process was successful.

This method works well in organiza-
tions that are resistant to process im-
provement, i.e., project teams that will
likely fight processes that have not been

used in practice. The knowledge that
successful projects have used the process
makes buy-in more likely. However,
these processes may be incomplete ac-
cording to the CMM and may need
adjustment in the future. Unfortunately,
this method focuses on creating docu-
mented processes, complete or not.

The challenge comes in how to de-
fine a successful project. The organiza-
tion cannot only look at whether the
project achieved its goals, but how it
achieved them. Before implementing
this method, the organization must
define a successful project in terms of its
business goals and engineering needs.

Self-Selection
This method requires that project mem-
bers submit processes they believe are
worthy for the organization to use. They
know that the processes work and be-
lieve that other projects could success-
fully use them. Management also may
draw on these people’s experiences and
submit processes they believe other
projects could use.

This method is especially useful
when groups have independently estab-
lished mature practices, without waiting
for the rest of the organization to im-
prove. This method also speeds up the
adoption process, since the processes are
known to work in the organization. The
SEPG’s job is to determine whether the
processes are complete or need to be
expanded to cover CMM practices.

The self-selection method can cause
problems if projects view it as a form of
self-congratulation. As with the Bubble
Up method, self-selection requires that
acceptance criteria be in place to ensure
the submitted processes are truly worthy
for use across the organization.

Shadowing
Project workers do not always have the
time or ability to document how they
perform their processes. Shadowing
helps this type of project. The SEPG
follows the project and documents its
processes. Project members then review
what the SEPG has written to confirm
that the description reflects their pro-
cesses. The project now has its processes
documented, and the SEPG has a candi-
date process for its OSSP.

In addition to creating documented
working processes, this method supports
the waiver process needed for process
improvement. If a particular project
needs to use processes outside the norm,
or if project members merely want to try
something different, the SEPG can
shadow the project to document the
differences and determine whether they
are improvements.

This method best fits an organization
that resists process improvement or
claims to be too busy to improve. With a
minimal investment, the process can be
documented, and once documented, it
can be improved based on the CMM
process descriptions.

Deploying Usable Processes
Defining usable processes is only half the
fun. Once they are defined and deter-
mined to be good enough for other
projects, the SEPG must find ways to
deploy them. This again depends on the
current organizational culture and situa-
tion.

Starting Monday
This method relies on a mandate that
the entire organization begin to use the
same process on a certain day or date,
usually a Monday or the first of the

Table 2. Methods of deployment.

A Good Idea Still Requires a Good Implementation

24 CROSSTALK The Journal of Defense Software Engineering January 1998

month. There is no transition period
and no choice. The organization must
begin to use the process on exactly that
date—or else.

This method is commonly used
when there is an extreme need for con-
formity. For instance, if the organization
is building safety-critical systems, it
cannot continue to use a flawed process.
Or perhaps the organization may be
attempting to re-baseline measures in its
process database. The data must be con-
sistent, so conformance to the process is
mandated.

With a short suspense date for imple-
mentation, the SEPG must quickly train
the technical staff to be successful. They
must be prepared for a tremendous
number of trouble calls for help with the
process. Automation may lag behind but
should eventually catch up.

Testing the Water
Processes do not always work right the
first time, so they are tested through the
use of pilots—much like testing the
water with your toe. The process is tried
in selected areas to see if it is good
enough for organization-wide use. If the
water feels right and the process works,
the entire organization will jump into
the water.

This is the most common deploy-
ment method for process improvement.
Most organizations want to make sure a
change will be an improvement before
exposing the entire organization to it.

This builds confidence in the process
and fosters automation of the process.

The SEPG should also train the
organization in any new method in
several training sessions for different
groups. The overall amount of training is
based on whether the rest of the organi-
zation is going to jump into the water at
once or ease into the water one part at a
time.

Fill in the Gaps
Projects usually have practices in place
that, for the most part, are successful;
members only need to fill in the gaps
between what they are doing and what
needs to be done. As gaps are found,
they are filled based on the organization’s
defined processes. By making minor
adjustments to their current practices,
project members incorporate process
improvement into their ongoing product
development. With time, the project has
all the gaps filled and works according to
the organization’s defined processes.

This method works well when
projects claim to be too busy to imple-
ment improvement. The changes are
incremental and meaningful and based
on current practices. The project im-
proves without team members having to
concede that they are actively working
on process improvement.

The SEPG’s job is more complicated
in this method because they are con-
stantly doing gap analyses. The relation-
ship with the projects is more detailed
and drawn out. Improvement takes

longer but is likely to have greater buy-in
and be institutionalized without as much
verification.

Conclusion
Poor implementation of a good idea
does not make it a bad idea. No matter
how wonderful an idea is at its incep-
tion, its implementation will determine
whether it continues to be good. The
CMM is no exception. It has been
proven to be an excellent tool for im-
provement, but it must be implemented
in a way that matches the organization’s
culture and present circumstances. Pro-
cess improvement requires different
approaches to process definition and
deployment. The organization must find
the right combination of definition and
deployment to benefit from the CMM. u

About the Author
David Quinn is technical director of the
Software Engineering Knowledge-Based
Center at the National Security Agency.
He has over 14 years software develop-
ment and maintenance experience. He
spent the last four years working on soft-
ware process improvement as a process
consultant. He is certified by the Software
Engineering Institute as a lead assessor for
CMM-Based Appraisals for Internal Pro-
cess Improvement. He also is a member of
the CMM Advisory Board.

National Security Agency
9800 Savage Road, Suite 6639
Ft. Meade, MD 20755-6639
Voice: 301-688-9440
Fax: 301-688-9436
E-mail: dpqsr@romulus.ncsc.mil

Achieving Information Superiority
Lt. Gen. Ronald T. Kadish

Commander, Electronic Systems Center, Hanscom Air Force Base, Mass.

In a speech given at the Air Force Information Technology Conference in September 1997 at Standard Systems Group,
Montgomery, Ala., Lt. Gen. Kadish describes the new framework to be employed by Air Force in its quest to achieve
information superiority. Included in the strategy are an acquisition cycle time of 18 months, seamless connections between
classified and unclassified systems, and commercial-off-the-shelf applications that are open system, based on standards.

Web Addition

Software Engineering Technology

This article can be found in its entirety on the Software Technology Support Center Web site at http://
www.stsc.hill.af.mil/CrossTalk/crostalk.html. Go to the “Web Addition” section of the table of contents.

CROSSTALK The Journal of Defense Software Engineering 25January 1998

We should keep the two-digit year fields when solving year 2000 (Y2K) problems. Con-
vert the existing series of year values to a string of values that the application programs can
handle without error. Then convert all year values back before the outputs are produced.
This will reduce the Y2K problem to primarily a job control language exercise.

It has been estimated that $600
billion will have to be spent world-
wide to fix the Y2K problem that

afflicts the computer world. Most of
this money will be wasted because of a
poor problem definition. It does not
take a computer genius to realize this—
a smart kid could figure it out. Allow
me to illustrate.

SK (Smart Kid) sat on her living
room sofa moodily gazing at a copy of
the local county newspaper, where she
had just read that her county govern-
ment had estimated that it would have
to spend $44 million to fix the Y2K
problems for all its computer systems.
(Not the whole state of Maryland, just
her little county.)

SK was not a “computernick.” She
used word processing on her computer
to write papers faster, but she was to-
tally uninterested in the computer toys
that so fascinated some of her class-
mates. Nevertheless, she indulged her-
self in a silly daydream based on what
she had just read in the newspaper.

In this daydream, Dwight Eisen-
hower was not just the pretty-good
president he was in reality, but had
single-handedly ended war and hunger
forever. As a result, the world revised
the calendar around him. The term AD
no longer stood for Anno Domini, but
Age of Dwight. Year AD 1 was the year
Eisenhower started planning to make
his move on the presidency, formerly
known as 1951.

Great, thought SK. If we had actu-
ally rearranged the calendar, we would
not now be worrying about spending
$600 billion on the Y2K problem. It
then occurred to SK that for the com-
putational purposes of computer pro-

grams, we could pretend that the above
scenario had indeed taken place. She
was unsure of the details, not having
computer experience, but she was sure
it could be done.

I know it can be done, and I will
describe how. First, however, under-
stand that I am only discussing batch-
processing computer systems. I know
nothing about the problems of eleva-
tors, heart pacemakers, and other such
devices. Now let us define the real
problem for batch-processing computer
systems.

A Poor Problem Definition
The four-digit year values we use every
day (1998, 1999, 2000 ...) would elimi-
nate the Y2K problem were they al-
ready integrated in our computer sys-
tems. But they are not so integrated, so
we must convert the two-digit year
fields in our programs to four-digit
fields.

A Good Problem Definition
The two-digit year values we use every
day and which are in our databases (98,
99, which lead to 00, 01...) will cause
these computer programs to malfunc-
tion when we reach the year 2000.

We could convert these two-digit
values to another series of continuous
two-digit values that would not cause
problems with computer processing in
the year 2000. The following explana-
tion has phrasing that reflects my back-
ground as an IBM mainframer, but it
contains a sound general solution.

Leave the application programs
alone. From any input file that contains
year values, create a temporary file in
which year values are converted to a

continuous series that the application
program can handle, then have this
temporary file be the input to the appli-
cation.

For example, assume a time frame
starting at the beginning of 1951. This
year would be 01 for the application
program, 1968 would be 18, 1997
would be 47, and 2006 would be 56.
All the calculations, compares, and sorts
that involve a year would work fine
(assuming there is no data in this sys-
tem for a year earlier than 1951, in
which case, my example would have to
be modified).

Then, the output data sets with year
fields have to be produced as temporary
files in which the year values are con-
verted back (47 becoming 97, 56 be-
coming 06, etc.) before the final out-
puts are produced.

The only work involved here would
be to change job control language to
produce and handle the temporary data
sets, to write the truly infinitesimal
programs to convert year values, and to
move the interaction with the final
output devices from the application
programs to the final job steps in which
the year values are translated back. This
would be easy for people who know
what they are doing. It would be much
easier than pawing line by line through
a Himalayan mountain range of appli-
cation program coding.

As pointed out above, the calcula-
tions, compares, and sorts in the appli-
cation programs would work perfectly.
Therefore, my suggested method would
give a high level of confidence that is
missing in articles I have been reading
on the Y2K problem; in these articles,

The Year 2000 Farce
Peter Errington

Open Forum

26 CROSSTALK The Journal of Defense Software Engineering January 1998

unforeseen surprises are feared from
having to change date field lengths.

Some organizations, already worry-
ing whether they can adapt before
2000, have less time than they realize.
For example, a “99” in a year field may
not represent a year but instead be a
flag. Or information may be entered
now that pertains to the next century (a
loan today may have an end date in the
next century, which would cause the
program to reject the information with
the message that a loan cannot end
before it begins. This has actually hap-
pened.)

So in addition to ease of conversion
and high confidence level, my sug-
gested approach (because ease equals
speed) may allow deadlines to be met
that are more stringent than some orga-
nizations realize.

I have spent considerable time try-
ing to think of valid counter arguments
to the above proposal, and those I have
come up with have all been weak. The
most valid of the lot is that organiza-
tions might be required to furnish other
organizations with files that contain
four-digit year fields. But I cannot
imagine an easier programming job
than accepting as input a record with a
two-position year field(s) and produc-
ing an output record with additional
characters “19” or “20” added where
appropriate.

To summarize, it seems the world is
bent on squandering untold billions for
no valid reason. ◆

About the Author
Peter Errington has spent his entire
career in data processing, starting in

1961. He retired in
1996, having worked
for three private firms
and two government
agencies. From 1961 to
1971, he was employed
at the Southern New

England Telephone Co., General Electric,
and Informatics. In 1971, he joined the
Agency for International Development,
where he specialized in payroll and per-
sonnel systems and economic and social
data banks. In 1989, he moved to the
Defense Logistics Agency, where, among
other things, he worked extensively on
Continuous Acquisition and Lifecycle
Support and warehouse automation.

3809 Archer Place
Kensington, MD 20895
Voice: 301-946-7232
Fax: 703-767-6564
E-mail C/O: bette_hill@hq.dla.mil

Open Forum

Year 2000 PROGRESS
Mission-Critical Systems of
Federal Departments and Agencies

SSA
Social Security Administration YES 78% 67% YES A-

GSA
General Services Administration YES 35% 26% YES B
NSF
National Science Foundation YES 33% 25% NO B
SBA
Small Business Administration YES 35% 35% YES B
HHS
Department of Health and YES 28% 10% YES B-
Human Services

EPA
Environmental Protection Agency NO 33% 28% YES C
FEMA
Federal Emergency NO 35% 35% YES C
Management Agency
HUD
Department of Housing and YES 9% 2% YES C
Urban Development
Interior
Department of the Interior YES 43% 0% NO C
Labor
Department of Labor YES 15% 11% YES C
State
Department of State YES 25% 0% NO C
VA
Department of Veterans Affairs NO 51% 28% YES C

Assessment

Completed

Renovation

Completed

Testing

Completed
Any

Implementation

Rating

DOD
Department of Defense NO 40% 34% YES C-

Commerce
Department of Commerce NO 15% 6% YES D
DOE
Department of Energy NO 10% 10% YES D
Justice
Department of Justice YES 1% 1% NO D
NRC
Nuclear Regulatory Commission YES 0% 0% NO D
OPM
Office of Personnel Management YES 3% 0% NO D
Agriculture
Department of Agriculture NO 8% 4% YES D-
NASA
National Aeronautics and NO 8% 7% YES D-
Space Administration
Treasury
Department of the Treasury NO 6% 5% YES D-

AID
Agency for International NO N/A N/A N/A F
Development
DOT
Department of Transportation NO 0% 0% NO F
Education
Department of Education NO 0% 0% NO F

Prepared for Subcommittee Chairman Steven Horn.
The departments and agencies are responsible for the accuracy
and consistency of percentages reported.
Created: Sep. 15, 1997
Revised: N/A
Subcommittee on Government Management, Information, and Technology
Source: http://www.house.gov/reform/y2k/970915score.htm

CROSSTALK The Journal of Defense Software Engineering 27January 1998

The effects of Y2K problems
are not imagined—many orga-
nizations are already experienc-

ing them, and the threat of litigation
between organizations looms because of
Y2K computer problems. Government
and industry information technology
managers are reacting to the problems
they have already experienced, and now
have data to project the impact if their
systems fail. As a result, many have
accelerated their Y2K efforts.

However, there are good and bad
ways to respond the Y2K problem, as
illustrated by an old story of two
friends who seized an opportunity to
sell watermelons. Several farmers of-
fered to sell them their bumper crop for
the super price of 50 cents per water-
melon. So the friends bought a large
truck and began to sell watermelons
rapidly at 55 cents each. A week later,
after selling many truckloads of melons,
one of the friends said to the other,
“Something has got to change. We’re
losing money.” The other friend re-
plied, “Yes, we are losing money, I’ve
been concerned about that as well.
What we need to do is buy a bigger
truck.”

Such is the Y2K effort: failure to
correctly diagnose and treat Y2K prob-
lems can lead to disaster. Among the
worst responses is to assume that some-

one has or will discover a simple, cheap
solution to the problem, or to miscalcu-
late the severity of the problem. It is
important to note that the methods and
tools fostered from modern improved
processes are providing real solutions
for Y2K problems; however, system
renovation costs account for only a
fraction of total Y2K remediation costs.
As a result, even the most efficient fixes
are not the panacea they might initially
seem to be.

On the other hand, overreaction to
the Y2K issue can also lead to wasteful
mistakes. In the February 1996 issue of
American Programmer, Nicholas
Zvegintzov warns of the dangers of
being scared into jumping on the
wrong bandwagon, since some people
are more concerned about making
money from the Y2K issue than they
are with providing reliable data and the
fastest, safest solutions possible.

The STSC Y2K team agrees, for the
most part, with the foundation for
warnings about unsavory or overhyped
Y2K assertions. Assertions of a Y2K
racket, ruse, or farce have probably
been used by Zvegintzov and others to
curb an overreaction and to reduce
superfluous Y2K activities. The hazard
of such language is that it can lead to
the opposite effect. Care should be

taken that the scope of contingency
actions are not too narrow, become
inert, or that contingency planning is
deferred and not present when needed.
While many may have already become,
or will become, victims of farce, racket,
and ruse elements, many more are in
need of much more Y2K help and do
not even know it. Far more organiza-
tions have victimized themselves by
underestimating the costs, risks, and
difficulties to solve their Y2K problems.

Worldwide Y2K Costs
The Asia Pacific View [1] estimates that
worldwide Y2K fixes will average about
$1.10 per line of code, a conservative
estimate when compared to others.
Table 1 lists the cost breakdown esti-
mates for two studies.

Software Technology Support Cen-
ter (STSC) evaluations of current Air
Force efforts indicate that the cost
breakdowns in Table 1 are fundamen-
tally sound. Because “simple” Y2K fix
techniques are technically easy to ac-
complish, they have generally already
been anticipated and included in the
worldwide Y2K cost estimates. The
projected $600 billion world-wide
conversion cost estimate is difficult to
understand because many costs are not
accounted for.

Year 2000 Problem Fixes:
Don’t Hold Out for a Silver Bullet

Paul Harames
Software Technology Support Center

Despite overwhelming data regarding the year 2000 (Y2K) problem, there are engineers and
laymen who believe the Y2K crises is either overhyped or a sham. Although it is unwise to over-
react to the Y2K problem, many in the computer world mistakenly believe that quick solutions
and improved technologies will somehow save them from the enormous cost and time pressures
associated with Y2K fixes. Although some technologies are producing promising results, no method
eliminates the need to properly assess, test, and implement renovated systems. Some systems may
not need to be fixed at all, but will still require procedure changes and evaluations to assure Y2K
compliance. This article discusses issues associated with the year 2000 and explains why al-
though there may be no true silver bullet, Y2K problems may have a silver lining.

28 CROSSTALK The Journal of Defense Software Engineering January 1998

For example, the Air Force Y2K
compliance cost estimate is $400 mil-
lion, yet funding for this effort is essen-
tially nonexistent. Because Air Force
leadership mandates Y2K compliance
for mission-essential systems ahead of
all other maintenance efforts, the effort
is instead funded from sustainment
funding or included as part of the cur-
rent maintenance workload [2]. The
problem is, maintenance and support
programs require funding expansion to
devise and execute new plans and tests
for the Y2K transition. To set aside
work and squeeze the extra effort in
provides ever-diminishing returns while
postponing other vital work.

The point is that it appears a large
percentage of the $600 billion expendi-
ture will be taken from participating
organizations’ current support funding
and not from new funding initiatives.
The full consequences from pulling
resources from other programs to pay
for Y2K conversion work may generate
costly consequences yet unidentified.
And no one can predict the cost of
litigation, business failures, and other
ripple effects from the eventual mass

failure of interconnected computer
systems. Although the exact return on
investment is unknown for Y2K
projects, it will almost certainly be far
cheaper to fix problems than to ignore
them.1

Simple Fixes Are Not Cure-Alls
There are many Y2K solutions floating
among information technology profes-
sionals, many of which look feasible on
paper but have limited practical appli-
cation. One such solution is espoused
by Peter Errington on pages 25-26 of
this issue of CROSSTALK. It should be
noted that his solution is not original
and has been in use for some time, and
it does work for some computer sys-
tems. Variations of his solution are
evident in sliding window techniques
planned or already used in many Y2K
efforts we have reviewed.

Although Errington limited his
solution to batch-processing computer
systems (a severe limitation in today’s
automation data world), variations of
his technique can and are being more
broadly applied. However, his solution
still retains the following limitations,
which are similar to the limitations of
other simple-looking solutions.
• Although windowing techniques

(similar to Errington’s solution) are
often initially considered, the con-
sensus is that they are adequate in
only a small percentage of cases.

• As mentioned, the process of fixing
program code or data accounts for
only a limited portion of total Y2K
costs. Roughly half of the Y2K ef-
fort occurs during the testing phase
alone—and unfortunately, solutions
like Errington’s often ultimately
require extensive testing. Other
efforts include management con-
cerns, planning, and integration,
which also are outside of the scope
of performing actual Y2K correc-
tions. You cannot ignore, minimize,
or partially complete the other
phases of a Y2K solution without
introducing detrimental risks.

• Job Control Language (JCL) code
usually requires a significant amount
of complexity or elaborate logic

sequences to be useful for most
systems. And even once imple-
mented, such solutions often still do
not adequately address many Y2K
problems.

• The time required to develop ad-
equate JCL solutions increases rap-
idly as the scheme to handle Y2K
differences develops. This drives the
need to design application-specific
resolutions, especially as the level of
the JCL complexity increases. The
difficulty is recognizing the trade-off
(thresholds) of when JCL solutions
are impractical or insufficient.

• JCL is not robust enough to correct
critical problems within databases
and applications. This is usually
because an application’s logic flow
cannot be externalized.

• Major components found in distrib-
uted systems or system interfaces
require complex testing or other
alternatives to gain the assurances
required.

• Additional regression testing is al-
ways needed. These tests need to be
enhanced to assure correct or ad-
equate system performance.

The Testing Phase
Roughly half of Y2K costs are incurred
during the testing phase. Insidious
problems appear while testing many
systems; often, these problems are dis-
covered within applications that were
thought to be fixed or already compli-
ant. Another problem arises when a
system or application that is deter-
mined to be nonessential later turns out
to be essential, and no contingency plan
exists for it.

As every programmer knows, even
minor-looking program changes can
cause unexpected outcomes that are
time consuming to diagnose and fix.
Approaches are being developed that
minimize the scope of unexpected out-
comes (see Don Estes’ summary of
encapsulation strategies on pages 9-10
of this issue); however, thorough testing
is always needed to ensure that the
program and data will perform as ex-
pected when the system clock has been

Open Forum

Suggested (Adapted from The
Gartner Group estimates)
Awareness 6%
Assessment 20%
Renovation 15%
Validation 50%
Implementation 9%

Asia Pacific View
Awareness 1%
Inventory 1%
Project Scoping 4%
Analysis/Design 20%
Modification 20%
Unit Test 25%
Systems Test 15%
Acceptance Test 5%
Impl. Documentation 9%
Project Mgt. (add 25 percent to total
of above effort)

Table 1. Average estimated breakdown of Y2K
project costs.

CROSSTALK The Journal of Defense Software Engineering 29January 1998

set past, and the data aged to, the year
2000.

For example, one organization used
a system database that was developed
with four-digit years, giving manage-
ment unwarranted confidence that the
system was Y2K compliant. When a
test was conducted with the system date
set to the year 2000, the application
could not add any data to the database.
This surprised management and devel-
opers, who were disappointed with the
outcome but appreciated knowing the
truth before the year 2000. Because
testing was performed early, they had
time to obtain an updated version from
the vendor. Still, initially, all were confi-
dent that no Y2K problems existed.
The old notion that “one good test is
worth a thousand expert opinions”
should come to mind under all Y2K
circumstances.

The Y2K Cloud’s Silver Lining
Systems with Y2K problems often need
reengineering as well. The initiation of
the Y2K effort may be a good time to
obtain the information necessary for
improvement. During Y2K efforts,
objective data can usually be obtained
to quantify a system’s future. For ex-
ample, the steps identified in the Soft-
ware Reengineering Assessment Hand-
book [3] generally will clarify or make
apparent the values for reengineering a
system. However, prudence should be
exercised to assure that extra activities
do not dilute the Y2K testing or rem-
edies.

The tools and improved methods
spawned by the Y2K effort can be con-
sidered a healthy dose of medicine
forced upon organizations. These meth-
ods are adopted because of the time
constraints and the magnitude of effort

that must be accomplished. Systems are
undergoing inventory updates, system
and file cleanup, documentation
changes, and improvements to all pro-
cesses to accommodate the Y2K issues.

Much of this work is corrective
surgery, long neglected, or otherwise
not possible. There is renewed focus on
management and management tech-
niques accommodating these efforts.
New tools are used to assure a rapid
and thorough test or renovation of the
processes. The question then follows,
will the use of these improved processes
continue? If not, perhaps the
organization’s Y2K efforts will in the
long run largely be a waste of money.

Conclusion
Easy-looking fixes to Y2K problems
rarely offer significant cost savings. To
shortcut system disciplines or depend
on cure-all solutions is a negligent atti-
tude that can potentially lead to disas-
ter. To believe that a farce, racket, or
ruse exists may cause you to be unreal-
istically satisfied that you are adequately
treating your Y2K problems. Still, over-
doing a Y2K effort is wasteful and may
even be detrimental to a system’s useful
life. Organizations must strive to
achieve and maintain a professional
perspective and to take a balanced ap-
proach on all Y2K issues. ◆

Acknowledgments
I thank Paul Hewitt of the STSC and
Gregory Daich of SAIC (assigned to
the STSC) for their inputs to this ar-
ticle.

About the Author
Paul Harames is the lead of the STSC
reengineering domain. He is an electronic
engineer with over 31 years government

and industrial automa-
tion experience. His
experience includes an
extensive background
in test and evaluation
of radar equipment
and radar target pro-
cesses for air traffic

control and airborne radar systems. He
was an instructor at the Federal Aviation
Administration Academy, teaching and
developing courses for Air Route Termi-
nal Automation systems. More recent
work includes updates of automatic test
equipment (microwave) and development
of personal computer-based automatic
test systems. He has a bachelor’s degree in
solid state physics from Oklahoma City
University.

References
1. Cassell, J., K. Schick, B. Hall, and J.

Phelps, “Time Marches On–Less Than
900 Working Days to January 1, 2000,”
Asia Pacific View (APV), June 28, 1996
(see http://www.gartner.com/forms/
meyr2000.rsp.html).

2. Stevens, Capt. Chris, “The Air Force and
Year 2000,” CROSSTALK, STSC, Hill Air
Force Base, Utah, January 1998, pp. 3-4.

3. “Software Reengineering Assessment
Handbook,” Version 3.0, JLC-HDBK-
SRAH, March 1997 (see http://
www.stsc.hill.af.mil under “Reengineer-
ing”).

Note
1. Some have suggested that there has

been significant savings (millions of
dollars) from retaining two-digit dates.
But what is the point? It is like saying
that going out to eat is affordable be-
cause of a 50 percent-off sale at a cloth-
ing store where purchases were made
earlier. It is irrelevant that millions of
dollars have been saved unless this
money had already been available to
help resolve the Y2K problems.

Year 2000 Problem Fixes: Don’t Hold Out for a Silver Bullet

30 CROSSTALK The Journal of Defense Software Engineering January 1998

Essential Process Improvement
The Software Technology Support Center (STSC) Reengi-
neering and Year 2000 (Y2K) staff has introduced the con-
cept of “Essential Process Improvement” to focus on surviv-
ing the Y2K challenge.

Beating the Year 2000 Event Horizon
Your application’s event horizon (or expected failure date due
to problems with processing date values close to the year
2000) is fast approaching. You may only be able to improve
those processes that are absolutely essential to the success of
your Y2K upgrades. Other process improvement initiatives
may need to be postponed. You may be dealing with poorly
documented legacy systems that were built with less than
the best practices. The time is limited to redevelop a Y2K-
compliant system using improved development methods
and tools. What should you do?

Corporate and Project Year 2000 Compliance
Guidebooks
Our approach to help organizations conduct each phase of
their Y2K compliance project is based on industry best prac-
tices and our experience with Y2K upgrades. Corporate or
director-level issues that require high-level planning and
support need to be identified. Specific project-level issues also
need to be addressed. We help an organization tailor our
STSC Corporate Y2K Compliance Guidebook and our STSC
Y2K Project Guidebook for their project. These guidebooks
work in harmony with the Air Force Communications
Agency’s guidelines and checklists such as the Y2K Concept of
Operations and the Air Force Y2K Compliance Checklist.

STSC’s guidebooks provide a checklist of activities ac-
companied by supporting rationale to explain the purpose of
each activity. As each activity is accomplished, a date is en-
tered, giving management their Y2K project history. Aug-
mented with lessons learned, these project histories will sup-
port future maintenance efforts and potential litigation that
may arise due to unforeseen Y2K noncompliance.

Summary of Services
The STSC reengineering and Y2K staff provides on-site con-
sulting services on a cost-recovery basis. These services ad-
dress all phases to upgrade systems to Y2K compliance, in-
cluding

Awareness
• Y2K management briefings and tutorials.
• Test, inspection, and Y2K workshops and seminars.

• Y2K vulnerability assessments.
• Automation support (evaluate, select, and adopt).
• Y2K strategic planning and project management.

Assessment
• Systems, interfaces, and documentation inventories.
• Y2K system project plans (develop and review).
• Risk analysis and contingency planning.
• Code Y2K impact analysis (manual and tool assisted).
• Initial date-function tests of vendor-supplied software.

Renovation
• Code correction (manual and tool assisted).
• Code inspections and unit testing.
• Code correction progress tracking.

Validation
• Test plans and test procedures (prepare and inspect).
• Test execution (manual and tool assisted).
• Test progress tracking.

Implementation
• Operational test, evaluation, and certification.
• Coordinating production system implementation.
• Update project documentation and collect historical data.

We also have a number of resources that the STSC can pro-
vide to organizations to support their Y2K efforts, including
• Top management and project-specific Y2K guidebooks.
• Preliminary analysis of Y2K planning documents or test

plans.
• Y2K team augmentation (assistance) services.
• Project planning.
• Source code analysis.
• Source code renovation.
• System testing.
• Certification and compliance.
• Customized tool lists from one of the industry’s largest

Y2K tool databases.
• Guidance in tool evaluation, selection, and adoption.

Points of Contact
For more information, please contact the Y2K team.

Paul Harames
haramesp@software.hill.af.mil
801-775-5555 ext. 3091 or DSN 775-5555 ext. 3091

Greg Daich
daichg@software.hill.af.mil
801-775-5555 ext. 3043 or DSN 775-5555 ext. 3043

The Software Technology Support Center
Reengineering and Year 2000 Services

CROSSTALK The Journal of Defense Software Engineering 31January 1998

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
alderr@software.hill.af.mil

Managing Editor Tracy Stauder
801-777-9239 DSN 777-9239
staudert@software.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
gaskins@software.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5555 ext. 3027
hepwortk@software.hill.af.mil

Associate Editor Lorin J. May
801-775-5555 ext. 3026
mayl@software.hill.af.mil

Editorial Assistant Bonnie May
801-775-5555 ext. 3023
mayb@software.hill.af.mil

Features Coordinator Heather Winward
801-775-5555 ext. 3028
winwardh@software.hill.af.mil

Customer Service Barbara McDonald
801-777-8045 DSN 777-8045
mcdonalb@software.hill.af.mil

Fax 801-777-8069 DSN: 777-8069
STSC On-Line http://www.stsc.hill.af.mil/

CROSSTALK On-Line http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-777-8045, DSN 777-8045
Fax: 801-777-8069, DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Most material in CROSSTALK may be reprinted at no
charge. Coordinate reprint requests with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the In-
ternet. World Wide Web access is at http://www.stsc.hill.af.mil/.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil/. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil/. The Lynx browser or gopher
server can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at
801-774-6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for
assistance, or E-mail to portr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing
them, and their ability to accurately predict the cost and schedule of their
delivery. CROSSTALK is assembled, printed, and distributed by the Defense Print-
ing Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to
individuals actively involved in the defense software development process. Got an idea for BACKTALK? Send an E-mail to mayl@software.hill.af.mil

BACKTALK

Got an idea for BACKTALK? Send an E-mail to mayl@software.hill.af.mil

Year 2000: The MacGyver Solution
I’ve been talking to year 2000 (Y2K) experts and reading the recent Y2K analyses

of heavyweights like Capers Jones, Ed Yourdon, and Peter de Jager. Although they
present what looks like irrefutable evidence that much of the world will be unpre-
pared for the Y2K crisis, unfortunately they ignore one critical factor that should
cause us all to reject their gloomy forecast: nothing as bad as a worldwide computer
failure could ever happen! Not in a million bajillion years! It can’t! It can’t! IT CAN’T!

In spite of this kind of strong data, many Y2K “experts” insist that most organiza-
tions have started far too late to fix all their systems. It is sad that just because these
experts have watched a few hundred non-Y2K-compliant systems crash and burn,
and have seen how long it takes just to test a system, and have seen that organizations
are allocating only a fraction of the needed resources to the problem, they think they
can do some math and declare that almost everyone is ridiculously behind schedule.

These experts obviously haven’t watched enough television. By now, everyone
should know that no problem is too big, and no odds are too high for a scrappy
group of misfits who appear a little rough around the edges, yet when the going gets
tough they can do the impossible. I can’t count how many times I saw “The A-Team”
take only one afternoon to create, for example, a tactical stealth helicopter using
nothing but duct tape and an abandoned ’76 Pacer. Certainly, our computer engi-
neers could muster an equivalent feat! I bet that MacGyver alone could fix the Y2K
problem using nothing but PVC pipe, a transistor radio, and Gouda cheese.

But I won’t bore you with the technical details of Y2K fixes. For the sake of argu-
ment, let’s pretend that, as the experts predict, by Jan. 1, 2000, a large portion of the
world’s computers will be spitting out even more garbage data than they do right now.
Let us assume that non-Y2K-compliant microchips cause everything from micro-
waves and elevators to airplanes and bank vaults to start malfunctioning. As I will
prove below, any nitwit can refute the worst-case projections of the experts.

Businesses will have a greatly decreased ability to produce, distribute, and sell
goods. Rippling financial losses may trigger stock price plunges, business failures,
bank closures, unemployment, and recession. Yeah, right. Do they really think the
world economy is that volatile? Look at the U.S. stock market—stable, independent,
impervious to any outside influence other than when Alan Greenspan sneezes in the
wrong direction. And who cares if all that highly overvalued stock suddenly self-
corrects to a fraction of its present value? The Great Depression wasn’t that bad.

The communication, distribution, and utility infrastructures may limp badly
for a time. (Yawn.) What if it did happen? Most people have a few days’ supply of
food on hand and plenty of flammable furniture. And we’re talking about the dead of
winter here—plenty of snow to melt into water. A few days is time enough for thou-
sands of food distributors and utility companies to work out any unanticipated Y2K
bugs from their decentralized, real-time networks run by thousands of intercon-
nected, one-of-a-kind computer systems. Not to worry!

State, local, and federal government computer systems will be largely unable to
function. This could result in many wholesale changes to the way taxes are col-
lected and services are rendered. That’s supposed to be a disadvantage? It goes with-
out saying that in the face of disaster, our elected leaders would set aside petty differ-
ences, and in less time than it takes to vote down a congressional pay cut, would
form a solution that is efficient, effective, fair, and beneficial to all.

I could go on and on, but I’ve made my point. And one more thing—if the ex-
perts are so sure this “crash” will cause such chaos, may I ask: Are they working franti-
cally to safeguard their organizations’ survivability? Are they storing food and fuel for
a worst-case scenario? Are they avoiding debt and putting their wealth into tangible
assets? The answer is yes, they are. But what do they know? It all comes down to
whether you believe we can grit our teeth and somehow do the impossible (Rah!
Rah!), or you think it’s time to face the music and start working on feasible system
contingency plans (Boo!). So who do we bet the farm on: MacGyver or the “ex-
perts”? I’ll take MacGyver—after all, what have we got to lose?

 —Lorin May

